Introduction to Slurm Lab
Running your first job
Access to compute resources on Mines’s HPC platforms in managed through a job scheduler. The job scheduler manages HPC resources by having users send jobs using scripts, asking for resources, what commands to run, and how to run them. The scheduler will launch the script on compute resources when they are available. The script consists of two parts, instructions for the scheduler and the commands that the user wants to run.
A sample script is shown below:
#!/bin/bash
#SBATCH --job-name="sample"
#SBATCH --nodes=2
#SBATCH --account="fall25_hpc_workshop"
#SBATCH --ntasks-per-node=4
#SBATCH --ntasks=8
#SBATCH --time=01:00:00
cd $SCRATCH
ls > myfiles
srun hostname
The lines that begin with #SBATCH
are instructions to the scheduler. In order:
#SBATCH --job-name="sample"
- You are naming the job#SBATCH --nodes=2
- You are telling the scheduler that you want to run on two nodes#SBATCH --ntasks-per-node=4
- You want to run four tasks per node for a total of 8 tasks. (The —ntasks-per-node line is redundant in this case.)#SBATCH --time=01:00:00
- You will run no longer than 1 hr.
The last three lines are normal shell commands:
cd $SCRATCH
- You will be put in your scratch directory.ls > myfiles
- A directory listing will be put in the file myfiles.srun hostname
- The srun command will launch the program hostname in parallel, in this case 8 copies will be started simultaneously. Note that the ls command is not run in parallel; only a single instance will be launched.
The script is launched using the sbatch
command. By default the standard output and standard error will be put in files with the names slurm-######.out
and slurm-######.err
respectively, where ######
is a job number. For example running this script on Wendian produces:
[username@wendian001 ~]$ sbatch dohost
Submitted batch job 363541
After some time:
[username@wendian001 ~]$ ls -lt | head
total 88120
-rw-rw-r-- 1 username username 64 Sep 24 16:28 slurm-363541.out
-rw-rw-r-- 1 username username 2321 Sep 24 16:28 myfiles
...
[username@wendian001 ~]$ cat slurm-363541.out
c001
c002
c001
c001
c001
c002
c002
c002m
Running your first compiled job - Hello World!
Now that you can login, navigate the filesystem and understand the basics of the SLURM job scheduler, we are ready to send our first job to the scheduler. For the first example, we are going to show how to send a job using the simple C++ program for Hello World
:
// Source: https://devblogs.microsoft.com/cppblog/cpp-tutorial-hello-world/
#include <iostream>
int main()
{
std::cout << "Hello, World!" << std::endl;
return 0;
}
For this program hello_world.cpp, we can compile it using the system’s C++ compiler g++
:
$ g++ hello_world.cpp -o hello_world.exe
Now, to send this job using a job script, we need to write one using the SLURM preamble definitions. A sample job script run.slurm
for our Hello Program is below:
#!/bin/bash
#SBATCH --nodes=1 # number of nodes
#SBATCH --ntasks-per-node=1 # number of tasks per node
#SBATCH --ntasks=1 # redundant; total number of tasks: ntasks = nodes * ntasks-per-node
#SBATCH --account="fall25_hpc_workshop"
#SBATCH --time=00:00:01 # time in HH:MM:SS
#SBATCH --output output.%j # standard print output labeled with SLURM job id %j
#SBATCH --error error.%j # standard print error labeled with SLURM job id %j
echo "Job has started!"
srun hello_world.exe
echo "Job has finished!"
We will highlight some aspects of this SLURM script. First, the lines starting with #SBATCH
are part of a SLURM script’s preamble. There are a multitude of options for the preamble, where you read more about on the SLURM sbatch documentation page here.
The command srun tells SLURM what executable to run (in this case hello_world) and how to run it using all the SLURM preamble options above.
Now to send the job to SLURM we use sbatch
:
$ sbatch run.slurm
You should see the following printed to the screen:
Submitted batch job $JOB_ID
where $JOB_ID
will look something like 5711043
.
Using the Module System with Slurm Jobs
Software required for high performance computing is complex due to its web of dependencies of libraries and other scientifc software programs. Furthermore, each piece of scientific software may require dependencies that may conflict with existing libraries, or require a different version of a library completely. Hence, a modular system allows one to load and unload dependencies as needed, depending on what is required from the software.
On Linux systems, paths for software and their libraries are determined by setting environmental variables. You can see the settings of all variables by running the command printenv. In most cases, the most important environment variables are PATH
and LD_LIBRARY_PATH
. PATH
is an environment variable that sets a list of directories that can be searched for finding applications. Similarly, LD_LIBRARY_PATH
defines a list of directories that will be searched to find libraries used by applications. If you enter a command and see command not found
then it is possible the directory containing the application is not in PATH
; a similar error occurs for LD_LIBRARY_PATH
when it cannot find a required library. The module system is designed to easily set and unset collections of environment variables. On Mines HPC systems, this is done using the lmod module system. We will briefly describe some common important module commands and also how to use it in context of setting up and submitting a job.
Important Module commands
module spider
- Lists all available modules in a cascading tree formatmodule -r spider mpi
- Lists all modules related tompi
in a cascading tree formatmodule keyword gromacs
- List modules related to the gromacs programmodule load apps/gromacs/gcc-ompi-plumed
- Loads the Gromacs 2021.1 modulemodule unload apps/gromacs/gcc-ompi-plumed
- Unloads the Gromacs 2021.1 modulemodule purge
- Unloads all currenty loaded modulesmodule list
- Lists all currently loaded modules Not all applications are accessible by all HPC users. Some codes are commercial and require licensing, and hence PI approval. Some require PI approval for other reasons. If you are unable to load a module, or see permission errors when executing a job, and would like to know how you might obtain access, please submit a help request.
Some modules have dependencies that need to be manually entered. For example, the gromacs module requires that modules for the compiler and MPI be loaded first. If there is an unsatisfied dependency you will be notified.
Running jobs with modules
Hello World! Using MPI
// Reference: https://mpi.deino.net/mpi_functions/MPI_Init.html
#include "mpi.h"
#include "stdio.h"
using namespace std;
int main(int argc, char* argv[])
{
int rank, np;
MPI_Init(&argc,&argv); // initialize MPI
MPI_Comm_size(MPI_COMM_WORLD, &np); // get total number of processors
MPI_Comm_rank(MPI_COMM_WORLD, &rank); // get current rank
cout << "Hello World from rank " << rank << " out of " << np << " processors!" << endl;
MPI_Finalize(); // finalize MPI
return 0;
}
For the second program, we wanted to demonstrate how to use the system’s module system. This program initializes MPI, defines integer variables to store the number of processors np and the current processor/rank, rank, and then prints Hello World from rank rank
out of np
processors, followed by finalizing MPI.
To compile this code, we need to load modules from the module system. First, let’s print out the PATH variable before loading the modules:
echo $PATH
On Wendian:
$ module load compilers/gcc mpi/openmpi/gcc
This will load a newer GCC compiler that is required for our OpenMPI library we’re going to use with the code. After loading the modules, print out the PATH variable to see what has changed:
echo $PATH
What has changed?
To compile the code, we will use the MPI-wrapped C++ compiler mpicxx:
$ mpicxx hello_world.cpp -o hello_world.exe
A sample job script (which we will call run.slurm) to use the executable will look like:
#!/bin/bash
#SBATCH --nodes=1 # number of nodes
#SBATCH --ntasks-per-node=12 # number of tasks per node
#SBATCH --ntasks=12 # redundant; total number of tasks: ntasks = nodes * ntasks-per-node
#SBATCH --account="fall25_hpc_workshop"
#SBATCH --time=00:00:01 # time in HH:MM:SS
#SBATCH --output output.%j # standard print output labeled with SLURM job id %j
#SBATCH --error error.%j # standard print error labeled with SLURM job id %j
# Load the modules used to compile the code in the job script
module load compilers/gcc mpi/openmpi/gcc
echo "Job has started!"
srun hello_world.exe
echo "Job has finished!"
As with the last example, we can send the job to the scheduler using the command:
$ sbatch run.slurm
When the job completes, you should see an output file called output.%j
where %j
is the job ID. The output for this job should look similar to:
Job has started!
Hello, World! from rank 1 out of 12 processors!
Hello, World! from rank 3 out of 12 processors!
Hello, World! from rank 5 out of 12 processors!
Hello, World! from rank 7 out of 12 processors!
Hello, World! from rank 9 out of 12 processors!
Hello, World! from rank 10 out of 12 processors!
Hello, World! from rank 11 out of 12 processors!
Hello, World! from rank 0 out of 12 processors!
Hello, World! from rank 2 out of 12 processors!
Hello, World! from rank 4 out of 12 processors!
Hello, World! from rank 6 out of 12 processors!
Hello, World! from rank 8 out of 12 processors!
Job has finished!
Using Python
For many cases, Python is a popular scientific computing program language with a large library of modules to choose from. There are so many dependencies that managing python modules through the HPC module system alone would become incredibly cumbersome. As an alternative, we recommend HPC users take control of the python modules they need by creating their own environment using Anaconda. We will briefly go over how to do this below.
Creating your own environment using Anaconda
First step is to load the desired version Python version:
$ module load apps/python3
Then create your own python environment using the following command:
$ conda create --name my_env python=3.13
You should see something similiar to the following print to the screen:
Retrieving notices: done
Channels:
- conda-forge
- defaults
Platform: linux-64
Collecting package metadata (repodata.json): done
Solving environment: done
==> WARNING: A newer version of conda exists. <==
current version: 24.11.3
latest version: 25.7.0
Please update conda by running
$ conda update -n base -c conda-forge conda
## Package Plan ##
environment location: /u/pa/sh/ndanes/.conda/envs/my_env
added / updated specs:
- python=3.13
The following packages will be downloaded:
package | build
---------------------------|-----------------
libgcc-15.1.0 | h767d61c_5 805 KB conda-forge
libgomp-15.1.0 | h767d61c_5 437 KB conda-forge
libuuid-2.41.2 | he9a06e4_0 36 KB conda-forge
openssl-3.5.3 | h26f9b46_1 3.0 MB conda-forge
python-3.13.7 |h2b335a9_100_cp313 32.0 MB conda-forge
------------------------------------------------------------
Total: 36.3 MB
The following NEW packages will be INSTALLED:
_libgcc_mutex conda-forge/linux-64::_libgcc_mutex-0.1-conda_forge
_openmp_mutex conda-forge/linux-64::_openmp_mutex-4.5-2_gnu
bzip2 conda-forge/linux-64::bzip2-1.0.8-hda65f42_8
ca-certificates conda-forge/noarch::ca-certificates-2025.8.3-hbd8a1cb_0
ld_impl_linux-64 conda-forge/linux-64::ld_impl_linux-64-2.44-h1423503_1
libexpat conda-forge/linux-64::libexpat-2.7.1-hecca717_0
libffi conda-forge/linux-64::libffi-3.4.6-h2dba641_1
libgcc conda-forge/linux-64::libgcc-15.1.0-h767d61c_5
libgomp conda-forge/linux-64::libgomp-15.1.0-h767d61c_5
liblzma conda-forge/linux-64::liblzma-5.8.1-hb9d3cd8_2
libmpdec conda-forge/linux-64::libmpdec-4.0.0-hb9d3cd8_0
libsqlite conda-forge/linux-64::libsqlite-3.50.4-h0c1763c_0
libuuid conda-forge/linux-64::libuuid-2.41.2-he9a06e4_0
libzlib conda-forge/linux-64::libzlib-1.3.1-hb9d3cd8_2
ncurses conda-forge/linux-64::ncurses-6.5-h2d0b736_3
openssl conda-forge/linux-64::openssl-3.5.3-h26f9b46_1
pip conda-forge/noarch::pip-25.2-pyh145f28c_0
python conda-forge/linux-64::python-3.13.7-h2b335a9_100_cp313
python_abi conda-forge/noarch::python_abi-3.13-8_cp313
readline conda-forge/linux-64::readline-8.2-h8c095d6_2
tk conda-forge/linux-64::tk-8.6.13-noxft_hd72426e_102
tzdata conda-forge/noarch::tzdata-2025b-h78e105d_0
Proceed ([y]/n)?
Once you confirm and the installation completes, you activate the conda environment with the following command:
$ conda activate my_env
You should now see (my_env) to the left on your command line like follows:
(my_env) [username@wendian001 ~]$
You can now add packages you need for your conda environment either using pip or the conda commands. For example, we can install the petsc4py package through conda-forge:
(my_env) [username@wendian ~]$ conda install -c conda-forge petsc4py
# You should see something similiar print to the screen:
Channels:
- conda-forge
- defaults
Platform: linux-64
Collecting package metadata (repodata.json): done
Solving environment: done
==> WARNING: A newer version of conda exists. <==
current version: 24.11.3
latest version: 25.7.0
Please update conda by running
$ conda update -n base -c conda-forge conda
## Package Plan ##
environment location: /u/pa/sh/ndanes/.conda/envs/my_env
added / updated specs:
- petsc4py
The following packages will be downloaded:
package | build
---------------------------|-----------------
_x86_64-microarch-level-4 | 2_skylake_avx512 8 KB conda-forge
attr-2.5.2 | h39aace5_0 66 KB conda-forge
fftw-3.3.10 |mpi_openmpi_h99e62ba_10 2.0 MB conda-forge
hdf5-1.14.6 |mpi_openmpi_h4fb29d0_3 3.8 MB conda-forge
hypre-2.32.0 |mpi_openmpi_h398ea61_1 1.9 MB conda-forge
keyutils-1.6.3 | hb9d3cd8_0 131 KB conda-forge
libaec-1.1.4 | h3f801dc_0 36 KB conda-forge
libamd-3.3.3 | haaf9dc3_7100102 49 KB conda-forge
libblas-3.9.0 | 36_h91f140b_blis 17 KB conda-forge
libbtf-2.3.2 | h32481e8_7100102 27 KB conda-forge
libcamd-3.3.3 | h32481e8_7100102 46 KB conda-forge
libcap-2.76 | h0b2e76d_0 119 KB conda-forge
libcblas-3.9.0 | 36_h3c44731_blis 17 KB conda-forge
libccolamd-3.3.4 | h32481e8_7100102 42 KB conda-forge
libcholmod-5.3.1 | h59ddab4_7100102 1.1 MB conda-forge
libcolamd-3.3.4 | h32481e8_7100102 33 KB conda-forge
libcurl-8.14.1 | h332b0f4_0 439 KB conda-forge
libfabric-2.2.0 | ha770c72_2 14 KB conda-forge
libfabric1-2.2.0 | h3ff6011_2 666 KB conda-forge
libgcc-ng-15.1.0 | h69a702a_5 29 KB conda-forge
libgfortran-15.1.0 | h69a702a_5 28 KB conda-forge
libgfortran-ng-15.1.0 | h69a702a_5 29 KB conda-forge
libgfortran5-15.1.0 | hcea5267_5 1.5 MB conda-forge
libhwloc-2.12.1 |default_h7f8ec31_1002 2.3 MB conda-forge
libiconv-1.18 | h3b78370_2 772 KB conda-forge
libklu-2.3.5 | hf24d653_7100102 142 KB conda-forge
liblapack-3.9.0 |12_hd37a5e2_netlib 2.7 MB conda-forge
libnghttp2-1.67.0 | had1ee68_0 651 KB conda-forge
libpmix-5.0.8 | h4bd6b51_2 714 KB conda-forge
libptscotch-7.0.8 | int32_h0de9fd6_2 179 KB conda-forge
libscotch-7.0.8 | int32_h16dc488_2 347 KB conda-forge
libspqr-4.3.4 | h852d39f_7100102 213 KB conda-forge
libstdcxx-15.1.0 | h8f9b012_5 3.7 MB conda-forge
libstdcxx-ng-15.1.0 | h4852527_5 29 KB conda-forge
libsuitesparseconfig-7.10.1| h92d6892_7100102 42 KB conda-forge
libsystemd0-257.9 | h996ca69_0 481 KB conda-forge
libudev1-257.9 | h085a93f_0 141 KB conda-forge
libumfpack-6.3.5 | heb53515_7100102 424 KB conda-forge
libxml2-2.15.0 | h26afc86_0 44 KB conda-forge
libxml2-16-2.15.0 | ha9997c6_0 546 KB conda-forge
mpi-1.0.1 | openmpi 6 KB conda-forge
mumps-include-5.8.1 | h158ef2a_3 19 KB conda-forge
mumps-mpi-5.8.1 | hcd43f66_3 2.6 MB conda-forge
numpy-2.3.3 | py313hf6604e3_0 8.5 MB conda-forge
openmpi-5.0.8 | h2fe1745_107 3.7 MB conda-forge
parmetis-4.0.3 | h02de7a9_1007 270 KB conda-forge
petsc-3.23.6 | real_h5e9295b_0 20.8 MB conda-forge
petsc4py-3.23.6 |np2py313h72f38b6_1 1.8 MB conda-forge
rdma-core-59.0 | hecca717_0 1.2 MB conda-forge
scalapack-2.2.0 | h16fb9de_4 1.8 MB conda-forge
superlu-7.0.1 | h8f6e6c4_0 274 KB conda-forge
superlu_dist-9.1.0 | h3349319_0 1.0 MB conda-forge
ucc-1.5.1 | hb729f83_0 8.4 MB conda-forge
ucx-1.19.0 | hc93acc0_4 7.4 MB conda-forge
------------------------------------------------------------
Total: 83.0 MB
The following NEW packages will be INSTALLED:
_x86_64-microarch~ conda-forge/noarch::_x86_64-microarch-level-4-2_skylake_avx512
attr conda-forge/linux-64::attr-2.5.2-h39aace5_0
blis conda-forge/linux-64::blis-0.9.0-h4ab18f5_2
c-ares conda-forge/linux-64::c-ares-1.34.5-hb9d3cd8_0
fftw conda-forge/linux-64::fftw-3.3.10-mpi_openmpi_h99e62ba_10
hdf5 conda-forge/linux-64::hdf5-1.14.6-mpi_openmpi_h4fb29d0_3
hypre conda-forge/linux-64::hypre-2.32.0-mpi_openmpi_h398ea61_1
icu conda-forge/linux-64::icu-75.1-he02047a_0
keyutils conda-forge/linux-64::keyutils-1.6.3-hb9d3cd8_0
krb5 conda-forge/linux-64::krb5-1.21.3-h659f571_0
libaec conda-forge/linux-64::libaec-1.1.4-h3f801dc_0
libamd conda-forge/linux-64::libamd-3.3.3-haaf9dc3_7100102
libblas conda-forge/linux-64::libblas-3.9.0-36_h91f140b_blis
libbtf conda-forge/linux-64::libbtf-2.3.2-h32481e8_7100102
libcamd conda-forge/linux-64::libcamd-3.3.3-h32481e8_7100102
libcap conda-forge/linux-64::libcap-2.76-h0b2e76d_0
libcblas conda-forge/linux-64::libcblas-3.9.0-36_h3c44731_blis
libccolamd conda-forge/linux-64::libccolamd-3.3.4-h32481e8_7100102
libcholmod conda-forge/linux-64::libcholmod-5.3.1-h59ddab4_7100102
libcolamd conda-forge/linux-64::libcolamd-3.3.4-h32481e8_7100102
libcurl conda-forge/linux-64::libcurl-8.14.1-h332b0f4_0
libedit conda-forge/linux-64::libedit-3.1.20250104-pl5321h7949ede_0
libev conda-forge/linux-64::libev-4.33-hd590300_2
libevent conda-forge/linux-64::libevent-2.1.12-hf998b51_1
libfabric conda-forge/linux-64::libfabric-2.2.0-ha770c72_2
libfabric1 conda-forge/linux-64::libfabric1-2.2.0-h3ff6011_2
libgcc-ng conda-forge/linux-64::libgcc-ng-15.1.0-h69a702a_5
libgcrypt-lib conda-forge/linux-64::libgcrypt-lib-1.11.1-hb9d3cd8_0
libgfortran conda-forge/linux-64::libgfortran-15.1.0-h69a702a_5
libgfortran-ng conda-forge/linux-64::libgfortran-ng-15.1.0-h69a702a_5
libgfortran5 conda-forge/linux-64::libgfortran5-15.1.0-hcea5267_5
libgpg-error conda-forge/linux-64::libgpg-error-1.55-h3f2d84a_0
libhwloc conda-forge/linux-64::libhwloc-2.12.1-default_h7f8ec31_1002
libiconv conda-forge/linux-64::libiconv-1.18-h3b78370_2
libklu conda-forge/linux-64::libklu-2.3.5-hf24d653_7100102
liblapack conda-forge/linux-64::liblapack-3.9.0-12_hd37a5e2_netlib
libnghttp2 conda-forge/linux-64::libnghttp2-1.67.0-had1ee68_0
libnl conda-forge/linux-64::libnl-3.11.0-hb9d3cd8_0
libpmix conda-forge/linux-64::libpmix-5.0.8-h4bd6b51_2
libptscotch conda-forge/linux-64::libptscotch-7.0.8-int32_h0de9fd6_2
libscotch conda-forge/linux-64::libscotch-7.0.8-int32_h16dc488_2
libspqr conda-forge/linux-64::libspqr-4.3.4-h852d39f_7100102
libssh2 conda-forge/linux-64::libssh2-1.11.1-hcf80075_0
libstdcxx conda-forge/linux-64::libstdcxx-15.1.0-h8f9b012_5
libstdcxx-ng conda-forge/linux-64::libstdcxx-ng-15.1.0-h4852527_5
libsuitesparsecon~ conda-forge/linux-64::libsuitesparseconfig-7.10.1-h92d6892_7100102
libsystemd0 conda-forge/linux-64::libsystemd0-257.9-h996ca69_0
libudev1 conda-forge/linux-64::libudev1-257.9-h085a93f_0
libumfpack conda-forge/linux-64::libumfpack-6.3.5-heb53515_7100102
libxml2 conda-forge/linux-64::libxml2-2.15.0-h26afc86_0
libxml2-16 conda-forge/linux-64::libxml2-16-2.15.0-ha9997c6_0
lz4-c conda-forge/linux-64::lz4-c-1.10.0-h5888daf_1
metis conda-forge/linux-64::metis-5.1.0-hd0bcaf9_1007
mpi conda-forge/noarch::mpi-1.0.1-openmpi
mumps-include conda-forge/linux-64::mumps-include-5.8.1-h158ef2a_3
mumps-mpi conda-forge/linux-64::mumps-mpi-5.8.1-hcd43f66_3
numpy conda-forge/linux-64::numpy-2.3.3-py313hf6604e3_0
openmpi conda-forge/linux-64::openmpi-5.0.8-h2fe1745_107
parmetis conda-forge/linux-64::parmetis-4.0.3-h02de7a9_1007
petsc conda-forge/linux-64::petsc-3.23.6-real_h5e9295b_0
petsc4py conda-forge/4linux-64::petsc4py-3.23.6-np2py313h72f38b6_1
rdma-core conda-forge/linux-64::rdma-core-59.0-hecca717_0
scalapack conda-forge/linux-64::scalapack-2.2.0-h16fb9de_4
superlu conda-forge/linux-64::superlu-7.0.1-h8f6e6c4_0
superlu_dist conda-forge/linux-64::superlu_dist-9.1.0-h3349319_0
ucc conda-forge/linux-64::ucc-1.5.1-hb729f83_0
ucx conda-forge/linux-64::ucx-1.19.0-hc93acc0_4
yaml conda-forge/linux-64::yaml-0.2.5-h280c20c_3
zstd conda-forge/linux-64::zstd-1.5.7-hb8e6e7a_2
Confirm by typing ‘y’ and pressing enter. You now should have your own Python environment with petsc4py!
Deactivating your conda environment
Once you are done with your environment, you can disable it by issuing the command:
$ conda deactivate
Organizing your jobs using environment variables between your home and scratch directory
The easiest way to organize SLURM jobs is to use the provided slurm job ID that is automatically assigned when your job is submitted. This job ID is conveniently stored in an environment variable called SLURM_JOBID
. In many HPC environments, your scratch directory is faster for input/output, but it usually not backed up, whereas your home directory is. For the job example below, we will re-use our “Hello World using MPI!” example above, but automatically move the job workload to scratch, including its output.
Calling the file submit_scratch_1.sh
:
#!/bin/bash
#SBATCH --nodes=1 # number of nodes
#SBATCH --ntasks-per-node=12 # number of tasks per node
#SBATCH --ntasks=12 # redundant; total number of tasks: ntasks = nodes * ntasks-per-node
#SBATCH --account="fall25_hpc_workshop"
#SBATCH --time=00:00:01 # time in HH:MM:SS
# notice we removed the output and error file comments of SBATCH
# Load the modules used to compile the code in the job script
module load compilers/gcc mpi/openmpi/gcc
echo "Job has started!"
echo "Moving job output to scratch"
mkdir -p ${SCRATCH}/jobs/${SLURM_JOBID}
cp hello_world.exe ${SCRATCH}/jobs/${SLURM_JOBID}
cd ${SCRATCH}/jobs/${SLURM_JOBID}
srun hello_world.exe 1> output.${SLURM_JOBID} 2> error.${SLURM_JOBID} # 1> refers to stdout, 2> refers to stderr
echo "Job has finished!"
After the file is saved, try submitting it
sbatch submit_scratch_1.sh
You should still see a slurm-<jobid>.out
file in your directory. But now check your scratch directory under 'jobs
cd $SCRATCH/jobs
cd <jobid>
Now look at the contents of that folder, you should see something like:
$ ls
hello_world.exe output.
So now we have a reference copy of the output and error (note that the error file won’t exist it the job runs successfully).
An alternative setup using SLURM_SUBMIT_DIR
If we don’t want to make a copy of hello_world.exe
to the output directory, we can make use of the SLURM_SUBMIT_DIR
environment variable to refer to the original folder we submitted the job from. We will also show that you can redirect the output and error files directly with #SBATCH
below. To do so, we first need to print out our SCRATCH
path:
$ echo ${SCRATCH}
/scratch/<your username>
We’ll call this file submit_scratch_2.sh
:
#!/bin/bash
#SBATCH --nodes=1 # number of nodes
#SBATCH --ntasks-per-node=12 # number of tasks per node
#SBATCH --ntasks=12 # redundant; total number of tasks: ntasks = nodes * ntasks-per-node
#SBATCH --account="fall25_hpc_workshop"
#SBATCH --time=00:00:01 # time in HH:MM:SS
#SBATCH --output /scratch/<your username>/jobs/%j/output.%j # standard print output labeled with SLURM job id %j
#SBATCH --error /scratch/<your username>/jobs/%j/error.%j # standard print error labeled with SLURM job id %j
# Load the modules used to compile the code in the job script
module load compilers/gcc mpi/openmpi/gcc
echo "Job has started!"
echo "Moving job output to scratch"
mkdir -p ${SCRATCH}/jobs/${SLURM_JOBID}
cd ${SCRATCH}/jobs/${SLURM_JOBID}
srun ${SLURM_SUBMIT_DIR}/hello_world.exe
echo "Job has finished!"
After the file is saved, try submitting it
sbatch submit_scratch_2.sh
And compare the differences between it and submit_scratch_1.sh
.