# Introduction to Slurm Lab ## Running your first job Access to compute resources on Mines's HPC platforms in managed through a job scheduler. The job scheduler manages HPC resources by having users send jobs using scripts, asking for resources, what commands to run, and how to run them. The scheduler will launch the script on compute resources when they are available. The script consists of two parts, instructions for the scheduler and the commands that the user wants to run. A sample script is shown below: #!/bin/bash #SBATCH --job-name="sample" #SBATCH --nodes=2 #SBATCH --account="fall25_hpc_workshop" #SBATCH --ntasks-per-node=4 #SBATCH --ntasks=8 #SBATCH --time=01:00:00 cd $SCRATCH ls > myfiles srun hostname The lines that begin with `#SBATCH` are instructions to the scheduler. In order: 1. `#SBATCH --job-name="sample"` - You are naming the job 2. `#SBATCH --nodes=2` - You are telling the scheduler that you want to run on two nodes 3. `#SBATCH --ntasks-per-node=4` - You want to run four tasks per node for a total of 8 tasks. (The —ntasks-per-node line is redundant in this case.) 6. `#SBATCH --time=01:00:00` - You will run no longer than 1 hr. The last three lines are normal shell commands: 7. `cd $SCRATCH` - You will be put in your scratch directory. 8. `ls > myfiles` - A directory listing will be put in the file myfiles. 9. `srun hostname` - The srun command will launch the program hostname in parallel, in this case 8 copies will be started simultaneously. Note that the ls command is not run in parallel; only a single instance will be launched. The script is launched using the `sbatch` command. By default the standard output and standard error will be put in files with the names `slurm-######.out` and `slurm-######.err` respectively, where `######` is a job number. For example running this script on Wendian produces: [username@wendian001 ~]$ sbatch dohost Submitted batch job 363541 After some time: [username@wendian001 ~]$ ls -lt | head total 88120 -rw-rw-r-- 1 username username 64 Sep 24 16:28 slurm-363541.out -rw-rw-r-- 1 username username 2321 Sep 24 16:28 myfiles ... [username@wendian001 ~]$ cat slurm-363541.out c001 c002 c001 c001 c001 c002 c002 c002m ## Running your first compiled job - Hello World! Now that you can login, navigate the filesystem and understand the basics of the SLURM job scheduler, we are ready to send our first job to the scheduler. For the first example, we are going to show how to send a job using the simple C++ program for `Hello World`: ```c++ // Source: https://devblogs.microsoft.com/cppblog/cpp-tutorial-hello-world/ #include int main() { std::cout << "Hello, World!" << std::endl; return 0; } ``` For this program hello_world.cpp, we can compile it using the system's C++ compiler `g++`: $ g++ hello_world.cpp -o hello_world.exe Now, to send this job using a job script, we need to write one using the SLURM preamble definitions. A sample job script `run.slurm` for our Hello Program is below: #!/bin/bash #SBATCH --nodes=1 # number of nodes #SBATCH --ntasks-per-node=1 # number of tasks per node #SBATCH --ntasks=1 # redundant; total number of tasks: ntasks = nodes * ntasks-per-node #SBATCH --account="fall25_hpc_workshop" #SBATCH --time=00:00:01 # time in HH:MM:SS #SBATCH --output output.%j # standard print output labeled with SLURM job id %j #SBATCH --error error.%j # standard print error labeled with SLURM job id %j echo "Job has started!" srun hello_world.exe echo "Job has finished!" We will highlight some aspects of this SLURM script. First, the lines starting with `#SBATCH` are part of a SLURM script's preamble. There are a multitude of options for the preamble, where you read more about on the SLURM sbatch documentation page here. The command srun tells SLURM what executable to run (in this case hello_world) and how to run it using all the SLURM preamble options above. Now to send the job to SLURM we use `sbatch`: $ sbatch run.slurm You should see the following printed to the screen: Submitted batch job $JOB_ID where `$JOB_ID` will look something like `5711043`. ### Using the Module System with Slurm Jobs Software required for high performance computing is complex due to its web of dependencies of libraries and other scientifc software programs. Furthermore, each piece of scientific software may require dependencies that may conflict with existing libraries, or require a different version of a library completely. Hence, a modular system allows one to load and unload dependencies as needed, depending on what is required from the software. On Linux systems, paths for software and their libraries are determined by setting environmental variables. You can see the settings of all variables by running the command printenv. In most cases, the most important environment variables are `PATH` and `LD_LIBRARY_PATH`. `PATH` is an environment variable that sets a list of directories that can be searched for finding applications. Similarly, `LD_LIBRARY_PATH` defines a list of directories that will be searched to find libraries used by applications. If you enter a command and see `command not found` then it is possible the directory containing the application is not in `PATH`; a similar error occurs for `LD_LIBRARY_PATH` when it cannot find a required library. The module system is designed to easily set and unset collections of environment variables. On Mines HPC systems, this is done using the lmod module system. We will briefly describe some common important module commands and also how to use it in context of setting up and submitting a job. ### Important Module commands * `module spider` - Lists all available modules in a cascading tree format * `module -r spider mpi` - Lists all modules related to `mpi` in a cascading tree format * `module keyword gromacs` - List modules related to the gromacs program * `module load apps/gromacs/gcc-ompi-plumed` - Loads the Gromacs 2021.1 module * `module unload apps/gromacs/gcc-ompi-plumed` - Unloads the Gromacs 2021.1 module * `module purge` - Unloads all currenty loaded modules * `module list` - Lists all currently loaded modules Not all applications are accessible by all HPC users. Some codes are commercial and require licensing, and hence PI approval. Some require PI approval for other reasons. If you are unable to load a module, or see permission errors when executing a job, and would like to know how you might obtain access, please submit a help request. Some modules have dependencies that need to be manually entered. For example, the gromacs module requires that modules for the compiler and MPI be loaded first. If there is an unsatisfied dependency you will be notified. ## Running jobs with modules ### Hello World! Using MPI ```c++ // Reference: https://mpi.deino.net/mpi_functions/MPI_Init.html #include "mpi.h" #include "stdio.h" using namespace std; int main(int argc, char* argv[]) { int rank, np; MPI_Init(&argc,&argv); // initialize MPI MPI_Comm_size(MPI_COMM_WORLD, &np); // get total number of processors MPI_Comm_rank(MPI_COMM_WORLD, &rank); // get current rank cout << "Hello World from rank " << rank << " out of " << np << " processors!" << endl; MPI_Finalize(); // finalize MPI return 0; } ``` For the second program, we wanted to demonstrate how to use the system's module system. This program initializes MPI, defines integer variables to store the number of processors np and the current processor/rank, rank, and then prints Hello World from rank `rank` out of `np` processors, followed by finalizing MPI. To compile this code, we need to load modules from the module system. First, let's print out the PATH variable before loading the modules: ``` echo $PATH ``` On Wendian: $ module load compilers/gcc mpi/openmpi/gcc This will load a newer GCC compiler that is required for our OpenMPI library we're going to use with the code. After loading the modules, print out the PATH variable to see what has changed: ``` echo $PATH ``` What has changed? To compile the code, we will use the MPI-wrapped C++ compiler mpicxx: $ mpicxx hello_world.cpp -o hello_world.exe A sample job script (which we will call run.slurm) to use the executable will look like: #!/bin/bash #SBATCH --nodes=1 # number of nodes #SBATCH --ntasks-per-node=12 # number of tasks per node #SBATCH --ntasks=12 # redundant; total number of tasks: ntasks = nodes * ntasks-per-node #SBATCH --account="fall25_hpc_workshop" #SBATCH --time=00:00:01 # time in HH:MM:SS #SBATCH --output output.%j # standard print output labeled with SLURM job id %j #SBATCH --error error.%j # standard print error labeled with SLURM job id %j # Load the modules used to compile the code in the job script module load compilers/gcc mpi/openmpi/gcc echo "Job has started!" srun hello_world.exe echo "Job has finished!" As with the last example, we can send the job to the scheduler using the command: $ sbatch run.slurm When the job completes, you should see an output file called `output.%j` where `%j` is the job ID. The output for this job should look similar to: Job has started! Hello, World! from rank 1 out of 12 processors! Hello, World! from rank 3 out of 12 processors! Hello, World! from rank 5 out of 12 processors! Hello, World! from rank 7 out of 12 processors! Hello, World! from rank 9 out of 12 processors! Hello, World! from rank 10 out of 12 processors! Hello, World! from rank 11 out of 12 processors! Hello, World! from rank 0 out of 12 processors! Hello, World! from rank 2 out of 12 processors! Hello, World! from rank 4 out of 12 processors! Hello, World! from rank 6 out of 12 processors! Hello, World! from rank 8 out of 12 processors! Job has finished! ### Using Python For many cases, Python is a popular scientific computing program language with a large library of modules to choose from. There are so many dependencies that managing python modules through the HPC module system alone would become incredibly cumbersome. As an alternative, we recommend HPC users take control of the python modules they need by creating their own environment using Anaconda. We will briefly go over how to do this below. #### Creating your own environment using Anaconda First step is to load the desired version Python version: $ module load apps/python3 Then create your own python environment using the following command: $ conda create --name my_env python=3.13 You should see something similiar to the following print to the screen: ``` Retrieving notices: done Channels: - conda-forge - defaults Platform: linux-64 Collecting package metadata (repodata.json): done Solving environment: done ==> WARNING: A newer version of conda exists. <== current version: 24.11.3 latest version: 25.7.0 Please update conda by running $ conda update -n base -c conda-forge conda ## Package Plan ## environment location: /u/pa/sh/ndanes/.conda/envs/my_env added / updated specs: - python=3.13 The following packages will be downloaded: package | build ---------------------------|----------------- libgcc-15.1.0 | h767d61c_5 805 KB conda-forge libgomp-15.1.0 | h767d61c_5 437 KB conda-forge libuuid-2.41.2 | he9a06e4_0 36 KB conda-forge openssl-3.5.3 | h26f9b46_1 3.0 MB conda-forge python-3.13.7 |h2b335a9_100_cp313 32.0 MB conda-forge ------------------------------------------------------------ Total: 36.3 MB The following NEW packages will be INSTALLED: _libgcc_mutex conda-forge/linux-64::_libgcc_mutex-0.1-conda_forge _openmp_mutex conda-forge/linux-64::_openmp_mutex-4.5-2_gnu bzip2 conda-forge/linux-64::bzip2-1.0.8-hda65f42_8 ca-certificates conda-forge/noarch::ca-certificates-2025.8.3-hbd8a1cb_0 ld_impl_linux-64 conda-forge/linux-64::ld_impl_linux-64-2.44-h1423503_1 libexpat conda-forge/linux-64::libexpat-2.7.1-hecca717_0 libffi conda-forge/linux-64::libffi-3.4.6-h2dba641_1 libgcc conda-forge/linux-64::libgcc-15.1.0-h767d61c_5 libgomp conda-forge/linux-64::libgomp-15.1.0-h767d61c_5 liblzma conda-forge/linux-64::liblzma-5.8.1-hb9d3cd8_2 libmpdec conda-forge/linux-64::libmpdec-4.0.0-hb9d3cd8_0 libsqlite conda-forge/linux-64::libsqlite-3.50.4-h0c1763c_0 libuuid conda-forge/linux-64::libuuid-2.41.2-he9a06e4_0 libzlib conda-forge/linux-64::libzlib-1.3.1-hb9d3cd8_2 ncurses conda-forge/linux-64::ncurses-6.5-h2d0b736_3 openssl conda-forge/linux-64::openssl-3.5.3-h26f9b46_1 pip conda-forge/noarch::pip-25.2-pyh145f28c_0 python conda-forge/linux-64::python-3.13.7-h2b335a9_100_cp313 python_abi conda-forge/noarch::python_abi-3.13-8_cp313 readline conda-forge/linux-64::readline-8.2-h8c095d6_2 tk conda-forge/linux-64::tk-8.6.13-noxft_hd72426e_102 tzdata conda-forge/noarch::tzdata-2025b-h78e105d_0 Proceed ([y]/n)? ``` Once you confirm and the installation completes, you activate the conda environment with the following command: $ conda activate my_env You should now see (my_env) to the left on your command line like follows: (my_env) [username@wendian001 ~]$ You can now add packages you need for your conda environment either using pip or the conda commands. For example, we can install the petsc4py package through conda-forge: (my_env) [username@wendian ~]$ conda install -c conda-forge petsc4py # You should see something similiar print to the screen: ``` Channels: - conda-forge - defaults Platform: linux-64 Collecting package metadata (repodata.json): done Solving environment: done ==> WARNING: A newer version of conda exists. <== current version: 24.11.3 latest version: 25.7.0 Please update conda by running $ conda update -n base -c conda-forge conda ## Package Plan ## environment location: /u/pa/sh/ndanes/.conda/envs/my_env added / updated specs: - petsc4py The following packages will be downloaded: package | build ---------------------------|----------------- _x86_64-microarch-level-4 | 2_skylake_avx512 8 KB conda-forge attr-2.5.2 | h39aace5_0 66 KB conda-forge fftw-3.3.10 |mpi_openmpi_h99e62ba_10 2.0 MB conda-forge hdf5-1.14.6 |mpi_openmpi_h4fb29d0_3 3.8 MB conda-forge hypre-2.32.0 |mpi_openmpi_h398ea61_1 1.9 MB conda-forge keyutils-1.6.3 | hb9d3cd8_0 131 KB conda-forge libaec-1.1.4 | h3f801dc_0 36 KB conda-forge libamd-3.3.3 | haaf9dc3_7100102 49 KB conda-forge libblas-3.9.0 | 36_h91f140b_blis 17 KB conda-forge libbtf-2.3.2 | h32481e8_7100102 27 KB conda-forge libcamd-3.3.3 | h32481e8_7100102 46 KB conda-forge libcap-2.76 | h0b2e76d_0 119 KB conda-forge libcblas-3.9.0 | 36_h3c44731_blis 17 KB conda-forge libccolamd-3.3.4 | h32481e8_7100102 42 KB conda-forge libcholmod-5.3.1 | h59ddab4_7100102 1.1 MB conda-forge libcolamd-3.3.4 | h32481e8_7100102 33 KB conda-forge libcurl-8.14.1 | h332b0f4_0 439 KB conda-forge libfabric-2.2.0 | ha770c72_2 14 KB conda-forge libfabric1-2.2.0 | h3ff6011_2 666 KB conda-forge libgcc-ng-15.1.0 | h69a702a_5 29 KB conda-forge libgfortran-15.1.0 | h69a702a_5 28 KB conda-forge libgfortran-ng-15.1.0 | h69a702a_5 29 KB conda-forge libgfortran5-15.1.0 | hcea5267_5 1.5 MB conda-forge libhwloc-2.12.1 |default_h7f8ec31_1002 2.3 MB conda-forge libiconv-1.18 | h3b78370_2 772 KB conda-forge libklu-2.3.5 | hf24d653_7100102 142 KB conda-forge liblapack-3.9.0 |12_hd37a5e2_netlib 2.7 MB conda-forge libnghttp2-1.67.0 | had1ee68_0 651 KB conda-forge libpmix-5.0.8 | h4bd6b51_2 714 KB conda-forge libptscotch-7.0.8 | int32_h0de9fd6_2 179 KB conda-forge libscotch-7.0.8 | int32_h16dc488_2 347 KB conda-forge libspqr-4.3.4 | h852d39f_7100102 213 KB conda-forge libstdcxx-15.1.0 | h8f9b012_5 3.7 MB conda-forge libstdcxx-ng-15.1.0 | h4852527_5 29 KB conda-forge libsuitesparseconfig-7.10.1| h92d6892_7100102 42 KB conda-forge libsystemd0-257.9 | h996ca69_0 481 KB conda-forge libudev1-257.9 | h085a93f_0 141 KB conda-forge libumfpack-6.3.5 | heb53515_7100102 424 KB conda-forge libxml2-2.15.0 | h26afc86_0 44 KB conda-forge libxml2-16-2.15.0 | ha9997c6_0 546 KB conda-forge mpi-1.0.1 | openmpi 6 KB conda-forge mumps-include-5.8.1 | h158ef2a_3 19 KB conda-forge mumps-mpi-5.8.1 | hcd43f66_3 2.6 MB conda-forge numpy-2.3.3 | py313hf6604e3_0 8.5 MB conda-forge openmpi-5.0.8 | h2fe1745_107 3.7 MB conda-forge parmetis-4.0.3 | h02de7a9_1007 270 KB conda-forge petsc-3.23.6 | real_h5e9295b_0 20.8 MB conda-forge petsc4py-3.23.6 |np2py313h72f38b6_1 1.8 MB conda-forge rdma-core-59.0 | hecca717_0 1.2 MB conda-forge scalapack-2.2.0 | h16fb9de_4 1.8 MB conda-forge superlu-7.0.1 | h8f6e6c4_0 274 KB conda-forge superlu_dist-9.1.0 | h3349319_0 1.0 MB conda-forge ucc-1.5.1 | hb729f83_0 8.4 MB conda-forge ucx-1.19.0 | hc93acc0_4 7.4 MB conda-forge ------------------------------------------------------------ Total: 83.0 MB The following NEW packages will be INSTALLED: _x86_64-microarch~ conda-forge/noarch::_x86_64-microarch-level-4-2_skylake_avx512 attr conda-forge/linux-64::attr-2.5.2-h39aace5_0 blis conda-forge/linux-64::blis-0.9.0-h4ab18f5_2 c-ares conda-forge/linux-64::c-ares-1.34.5-hb9d3cd8_0 fftw conda-forge/linux-64::fftw-3.3.10-mpi_openmpi_h99e62ba_10 hdf5 conda-forge/linux-64::hdf5-1.14.6-mpi_openmpi_h4fb29d0_3 hypre conda-forge/linux-64::hypre-2.32.0-mpi_openmpi_h398ea61_1 icu conda-forge/linux-64::icu-75.1-he02047a_0 keyutils conda-forge/linux-64::keyutils-1.6.3-hb9d3cd8_0 krb5 conda-forge/linux-64::krb5-1.21.3-h659f571_0 libaec conda-forge/linux-64::libaec-1.1.4-h3f801dc_0 libamd conda-forge/linux-64::libamd-3.3.3-haaf9dc3_7100102 libblas conda-forge/linux-64::libblas-3.9.0-36_h91f140b_blis libbtf conda-forge/linux-64::libbtf-2.3.2-h32481e8_7100102 libcamd conda-forge/linux-64::libcamd-3.3.3-h32481e8_7100102 libcap conda-forge/linux-64::libcap-2.76-h0b2e76d_0 libcblas conda-forge/linux-64::libcblas-3.9.0-36_h3c44731_blis libccolamd conda-forge/linux-64::libccolamd-3.3.4-h32481e8_7100102 libcholmod conda-forge/linux-64::libcholmod-5.3.1-h59ddab4_7100102 libcolamd conda-forge/linux-64::libcolamd-3.3.4-h32481e8_7100102 libcurl conda-forge/linux-64::libcurl-8.14.1-h332b0f4_0 libedit conda-forge/linux-64::libedit-3.1.20250104-pl5321h7949ede_0 libev conda-forge/linux-64::libev-4.33-hd590300_2 libevent conda-forge/linux-64::libevent-2.1.12-hf998b51_1 libfabric conda-forge/linux-64::libfabric-2.2.0-ha770c72_2 libfabric1 conda-forge/linux-64::libfabric1-2.2.0-h3ff6011_2 libgcc-ng conda-forge/linux-64::libgcc-ng-15.1.0-h69a702a_5 libgcrypt-lib conda-forge/linux-64::libgcrypt-lib-1.11.1-hb9d3cd8_0 libgfortran conda-forge/linux-64::libgfortran-15.1.0-h69a702a_5 libgfortran-ng conda-forge/linux-64::libgfortran-ng-15.1.0-h69a702a_5 libgfortran5 conda-forge/linux-64::libgfortran5-15.1.0-hcea5267_5 libgpg-error conda-forge/linux-64::libgpg-error-1.55-h3f2d84a_0 libhwloc conda-forge/linux-64::libhwloc-2.12.1-default_h7f8ec31_1002 libiconv conda-forge/linux-64::libiconv-1.18-h3b78370_2 libklu conda-forge/linux-64::libklu-2.3.5-hf24d653_7100102 liblapack conda-forge/linux-64::liblapack-3.9.0-12_hd37a5e2_netlib libnghttp2 conda-forge/linux-64::libnghttp2-1.67.0-had1ee68_0 libnl conda-forge/linux-64::libnl-3.11.0-hb9d3cd8_0 libpmix conda-forge/linux-64::libpmix-5.0.8-h4bd6b51_2 libptscotch conda-forge/linux-64::libptscotch-7.0.8-int32_h0de9fd6_2 libscotch conda-forge/linux-64::libscotch-7.0.8-int32_h16dc488_2 libspqr conda-forge/linux-64::libspqr-4.3.4-h852d39f_7100102 libssh2 conda-forge/linux-64::libssh2-1.11.1-hcf80075_0 libstdcxx conda-forge/linux-64::libstdcxx-15.1.0-h8f9b012_5 libstdcxx-ng conda-forge/linux-64::libstdcxx-ng-15.1.0-h4852527_5 libsuitesparsecon~ conda-forge/linux-64::libsuitesparseconfig-7.10.1-h92d6892_7100102 libsystemd0 conda-forge/linux-64::libsystemd0-257.9-h996ca69_0 libudev1 conda-forge/linux-64::libudev1-257.9-h085a93f_0 libumfpack conda-forge/linux-64::libumfpack-6.3.5-heb53515_7100102 libxml2 conda-forge/linux-64::libxml2-2.15.0-h26afc86_0 libxml2-16 conda-forge/linux-64::libxml2-16-2.15.0-ha9997c6_0 lz4-c conda-forge/linux-64::lz4-c-1.10.0-h5888daf_1 metis conda-forge/linux-64::metis-5.1.0-hd0bcaf9_1007 mpi conda-forge/noarch::mpi-1.0.1-openmpi mumps-include conda-forge/linux-64::mumps-include-5.8.1-h158ef2a_3 mumps-mpi conda-forge/linux-64::mumps-mpi-5.8.1-hcd43f66_3 numpy conda-forge/linux-64::numpy-2.3.3-py313hf6604e3_0 openmpi conda-forge/linux-64::openmpi-5.0.8-h2fe1745_107 parmetis conda-forge/linux-64::parmetis-4.0.3-h02de7a9_1007 petsc conda-forge/linux-64::petsc-3.23.6-real_h5e9295b_0 petsc4py conda-forge/4linux-64::petsc4py-3.23.6-np2py313h72f38b6_1 rdma-core conda-forge/linux-64::rdma-core-59.0-hecca717_0 scalapack conda-forge/linux-64::scalapack-2.2.0-h16fb9de_4 superlu conda-forge/linux-64::superlu-7.0.1-h8f6e6c4_0 superlu_dist conda-forge/linux-64::superlu_dist-9.1.0-h3349319_0 ucc conda-forge/linux-64::ucc-1.5.1-hb729f83_0 ucx conda-forge/linux-64::ucx-1.19.0-hc93acc0_4 yaml conda-forge/linux-64::yaml-0.2.5-h280c20c_3 zstd conda-forge/linux-64::zstd-1.5.7-hb8e6e7a_2 ``` Confirm by typing 'y' and pressing enter. You now should have your own Python environment with petsc4py! #### Deactivating your conda environment Once you are done with your environment, you can disable it by issuing the command: $ conda deactivate ## Organizing your jobs using environment variables between your home and scratch directory The easiest way to organize SLURM jobs is to use the provided slurm job ID that is automatically assigned when your job is submitted. This job ID is conveniently stored in an environment variable called `SLURM_JOBID`. In many HPC environments, your scratch directory is faster for input/output, but it usually not backed up, whereas your home directory is. For the job example below, we will re-use our "Hello World using MPI!" example above, but automatically move the job workload to scratch, including its output. Calling the file `submit_scratch_1.sh`: ``` #!/bin/bash #SBATCH --nodes=1 # number of nodes #SBATCH --ntasks-per-node=12 # number of tasks per node #SBATCH --ntasks=12 # redundant; total number of tasks: ntasks = nodes * ntasks-per-node #SBATCH --account="fall25_hpc_workshop" #SBATCH --time=00:00:01 # time in HH:MM:SS # notice we removed the output and error file comments of SBATCH # Load the modules used to compile the code in the job script module load compilers/gcc mpi/openmpi/gcc echo "Job has started!" echo "Moving job output to scratch" mkdir -p ${SCRATCH}/jobs/${SLURM_JOBID} cp hello_world.exe ${SCRATCH}/jobs/${SLURM_JOBID} cd ${SCRATCH}/jobs/${SLURM_JOBID} srun hello_world.exe 1> output.${SLURM_JOBID} 2> error.${SLURM_JOBID} # 1> refers to stdout, 2> refers to stderr echo "Job has finished!" ``` After the file is saved, try submitting it sbatch submit_scratch_1.sh You should still see a `slurm-.out` file in your directory. But now check your scratch directory under `'jobs` cd $SCRATCH/jobs cd Now look at the contents of that folder, you should see something like: $ ls hello_world.exe output. So now we have a reference copy of the output and error (note that the error file won't exist it the job runs successfully). ### An alternative setup using `SLURM_SUBMIT_DIR` If we don't want to make a copy of `hello_world.exe` to the output directory, we can make use of the `SLURM_SUBMIT_DIR` environment variable to refer to the original folder we submitted the job from. We will also show that you can redirect the output and error files directly with `#SBATCH` below. To do so, we first need to print out our `SCRATCH` path: $ echo ${SCRATCH} /scratch/ We'll call this file `submit_scratch_2.sh`: ``` #!/bin/bash #SBATCH --nodes=1 # number of nodes #SBATCH --ntasks-per-node=12 # number of tasks per node #SBATCH --ntasks=12 # redundant; total number of tasks: ntasks = nodes * ntasks-per-node #SBATCH --account="fall25_hpc_workshop" #SBATCH --time=00:00:01 # time in HH:MM:SS #SBATCH --output /scratch//jobs/%j/output.%j # standard print output labeled with SLURM job id %j #SBATCH --error /scratch//jobs/%j/error.%j # standard print error labeled with SLURM job id %j # Load the modules used to compile the code in the job script module load compilers/gcc mpi/openmpi/gcc echo "Job has started!" echo "Moving job output to scratch" mkdir -p ${SCRATCH}/jobs/${SLURM_JOBID} cd ${SCRATCH}/jobs/${SLURM_JOBID} srun ${SLURM_SUBMIT_DIR}/hello_world.exe echo "Job has finished!" ``` After the file is saved, try submitting it sbatch submit_scratch_2.sh And compare the differences between it and `submit_scratch_1.sh`.