Intro to Parallel Programs on HPC - Using Gromacs

Author: Nicholas A. Danes, PhD

For this lab, we will learn how to run GROMACS, a popular molecular dynamics software package used on HPC systems. It supports both shared and distributed memory parallel processing, making it a great first test problem for new HPC users.

To begin, we first need to download a benchmark problem from GROMACS and the workshop files. Copy the workshop materials using the following command:

cp /sw/BUILD/src/workshop/Workshop_Fall2024_day2.tar.gz ~/scratch

And go to that directory and untar it:

cd ~/scratch && tar -xf Workshop_Fall2024_day2.tar.gz
cd Workshop_Fall2024/rk2_python && ls

This sample problem is provided by the Max Planck Institue in Göttingen[1.] To download it, let’s go to our scratch directory, create a new folder and then download the zip file:

cd ~/scratch/Workshop_Fall2024/gromacs
wget https://www.mpinat.mpg.de/benchRIB.zip

# unzip
unzip benchRIB.zip

If unzipped correctly, you should see a file in the directory called benchRIB.tpr:

$ ls
benchRIB.tpr  benchRIB.zip

Next, let’s create a job script in order to run this job. We will try a few different configurations:

  1. A single 36-core node, using 36 MPI tasks

  2. A single 36-core node, using 36 OpenMP threads on 1 task

Single node, all MPI tasks

First the first job, let’s try one node, with 36 MPI tasks to run for 1 hour. We will also time the run in order to compare it to other configurations. Here is what the job script will look like:

#!/bin/bash
#SBATCH --job-name=gromacs-single-node-MPI
#SBATCH --account="fall2024_hpc_workshop"
#SBATCH --exclusive # USE FOR THIS LAB ONLY
#SBATCH --output=%j.out
#SBATCH --time=00:60:00 ## format is HH:MM:SS
#SBATCH --nodes=1
#SBATCH --ntasks=36

module load compilers/gcc
module load mpi/openmpi/gcc
module load libs/fftw/gcc-ompi
module load apps/gromacs/gcc-ompi

# set the number of OpenMP threads
NTOMP=1

mkdir -p ~/scratch/jobs/${SLURM_JOBID}
cd ~/scratch/jobs/${SLURM_JOBID}

start=`date +%s.%N`
srun gmx_mpi mdrun -ntomp ${NTOMP} -s ${SLURM_SUBMIT_DIR}/benchRIB.tpr -resethway
end=`date +%s.%N`

runtime=$( echo "$end - $start" | bc -l )

echo $runtime

We will call the Slurm script file single_node_MPI.sh. To submit the job, type

$ sbatch single_node_MPI.sh

For reference, here is the results achieved for this case:

               Core t (s)   Wall t (s)        (%)
       Time:    14489.672      402.492     3600.0
                 (ns/day)    (hour/ns)
Performance:        4.294        5.589

GROMACS reminds you: "Roses are read // Violets are blue // Unexpected '}' on line 32" (Anonymous)

845.404034006

Single node, all OpenMP threads on 1 task

GROMACS also supports OpenMP threads. To leverage this, we will tell Slurm we only want one task, but want 36 cpus per task on the job:

#!/bin/bash
#SBATCH --job-name=gromacs-single-node-MPI
#SBATCH --account="fall2024_hpc_workshop"
#SBATCH --exclusive # USE FOR THIS LAB ONLY
#SBATCH --output=%j.out
#SBATCH --time=00:60:00 ## format is HH:MM:SS
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=36

module load compilers/gcc
module load mpi/openmpi/gcc
module load libs/fftw/gcc-ompi
module load apps/gromacs/gcc-ompi

# set the number of OpenMP threads
NTOMP=${SLURM_CPUS_PER_TASK}

mkdir -p ~/scratch/jobs/${SLURM_JOBID}
cd ~/scratch/jobs/${SLURM_JOBID}

start=`date +%s.%N`
srun gmx_mpi mdrun -ntomp ${NTOMP} -s ${SLURM_SUBMIT_DIR}/benchRIB.tpr -resethway
end=`date +%s.%N`

runtime=$( echo "$end - $start" | bc -l )

echo $runtime

For reference, the final result with 36 OpenMP threads on 1 task should look like:

Writing final coordinates.

               Core t (s)   Wall t (s)        (%)
       Time:    15936.559      442.684     3600.0
                 (ns/day)    (hour/ns)
Performance:        3.904        6.147

GROMACS reminds you: "Why add prime numbers? Prime numbers are made to be multiplied." (Lev Landau)

911.438343690

So we see with this particular test problem, running all MPI tasks with our node is slightly faster than running 1 task with 36 OpenMP thread.

[1] Dept. of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, https://www.mpinat.mpg.de/grubmueller/bench . The GROMACS input .tpr files are licensed under the Creative Commons Attribution 4.0 International license.

Exercises

Modify the job script to run the following cases. Do you see any improvement in performance?

  1. Run with 1 node, 18 MPI tasks, 2 OpenMP threads per task

  2. Run with 2 nodes, 36 MPI tasks (18 MPI tasks per node), 1 OpenMP thread per task

  3. Run with 2 nodes, 72 MPI tasks (36 MPI tasks per node), 1 OpenMP thread per task

  4. Run with 2 nodes, 36 MPI tasks (18 MPI tasks per node), 2 OpenMP thread per task

  5. Run with 1 GPU node with 1 GPU card, 1 task (with 6 CPUs per task) by running the code with the following script. You can just copy and paste the following to a new job script caleld single_node_GPU.sh:

#!/bin/bash
#SBATCH --job-name=gromacs-single-node-GPU
#SBATCH -p gpu
#SBATCH --gres=gpu:v100:1
#SBATCH --output=%j.out
#SBATCH --time=00:60:00 ## format is HH:MM:SS
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=6
#SBATCH --account="fall2024_hpc_workshop"

module load compilers/gcc
module load libs/cuda
module load mpi/openmpi/gcc-cuda
module load libs/fftw/gcc-ompi
ml apps/gromacs/gcc-ompi-cuda

# set the number of OpenMP threads
NTOMP=1

mkdir -p ~/scratch/jobs/${SLURM_JOBID}
cd ~/scratch/jobs/${SLURM_JOBID}

start=`date +%s.%N`
srun gmx mdrun -ntomp ${NTOMP} -nb gpu -s ${SLURM_SUBMIT_DIR}/benchRIB.tpr -resethway
end=`date +%s.%N`

runtime=$( echo "$end - $start" | bc -l )

echo $runtime

There a number of other parameters you can adjust to run on CPU versus GPU with gromacs, based on the physical solver. For more details if you’re interested, see: https://manual.gromacs.org/documentation/current/user-guide/mdrun-performance.html