
Research Computing at Mines Workshop
Serial and Parallel Computing

September 4, 2024

Presented by:

Nicholas A. Danes, PhD

Computational Scientist

Research Computing Group (IT)

Recap of Day 1

• Overview of the world of Cyberinfrastructure & Research Computing

• HPC options for Mines Researchers

• Overview of skills needed to be a successful researcher on HPC

• Linux/Bash

• Slurm/Job Scheduler

• Parallel Computing

• Computational Notebook Practices

• Intro to Linux/Bash Lab

• Overview of Job Schedulers, SLURM and Python

• Intro to Slurm & Python Lab

Goals for Day 2

• Overview of Serial vs Parallel Computing

• A case study using a Python serial code (Lab)

• Parallel Programming Overview

• Shared vs Distributed Memory

• MPI

• OpenMP

• Lab on using parallelized software: GROMACS

HPC Resource Usage

• How do I use them?
• Most programs spawn 1 process (“task” in Slurm) and use one thread

(“cpu” in Slurm)
• On a desktop, some programs can see how many CPU cores you have and

request that many threads for the process and use them

• Examples: Some MATLAB functions, Games using DX12, Chrome/Firefox

• Slurm does not know how your program will use the resources you
give it

• If you give it 12 cores (“cpus”) but program only works with 1 core, those 11
cores will idle and do nothing

• To think about how to utilize HPC resources, we need to learn how
parallel programming/processing is implemented.

Serial vs Parallel Computing

• When a program uses a single process (“task”) with 1 core
(“cpu”), we say it is a serial computing program.

• When a program uses multiple cores, we say it is a parallel
computing program.

• Before thinking about parallel computing, we need to focus
on how well the program performs with serial computing.

Note: Optimization before Parallelization!

• “Premature optimization is the root of all evil” – Donald Knuth

• Often, writing your code to run as fast as possible (within
reason) with a single core is necessary before thinking about
parallelization.

• We will explore optimization with a simple Python code for a
single core next!

How to profile Python code
• cProfile

• Gives you a breakdown of all functions’ runtime in a code
• Multiple ways to use it:

• Call it in the command line:
$ python –m cProfile myscript.py

• Call it in another script:

• Other options: lineprofiler, timeit, pstats

References: https://towardsdatascience.com/how-to-profile-your-code-in-python-e70c834fad89

https://github.com/pyutils/line_profiler

import cProfile

cProfile.run(”mycode.main()")

https://towardsdatascience.com/how-to-profile-your-code-in-python-e70c834fad89
https://github.com/pyutils/line_profiler

A starting point for optimization:
Writing an ODE solver
Consider the initial value problem of the form:

which can numerically solved using Heun’s Method:

Where ℎ is the time step size, 𝑖 is the time step index, and ො𝑦 denotes the intermediate
solution. Let’s use this problem to see how to optimize writing scientific code for Python!

𝑦′ 𝑡 = 𝑓 𝑡, 𝑦

 𝑦(𝑡0) = 𝑦0

ො𝑦[𝑖+1] = 𝑦[𝑖] + ℎ 𝑓 𝑡[𝑖], 𝑦[𝑖]

𝑦[𝑖+1] = 𝑦[𝑖] +
ℎ

2
𝑓 𝑡[𝑖], 𝑦[𝑖] + 𝑓 𝑡[𝑖+1], ො𝑦[𝑖+1]

Copy the workshop materials using the following command:

 cp /sw/BUILD/src/workshop/Workshop_Fall2024_day2.tar.gz ~/scratch
And go to that directory and untar it:

 cd ~/scratch && tar -xf Workshop_Fall2024_day2.tar.gz
 cd Workshop_Fall2024/rk2_python && ls
Using Open OnDemand Interface

Go To: https://wendian-ondemand.mines.edu

Lab #1: Serial Python Optimization

https://wendian-ondemand.mines.edu/

Lab #1 Summary: Profiling multiple versions of our
ODE code

• Pure Python
• Surprisingly Performant!

• NumPy only
• Performs poorly due to lack of vectorization

• NumPy + Cython
• https://cython.org/

• Cython effectively allows one to write static-typed code in
Python/”Cython”, which is parsed into C and compiled into a Python
module.

https://cython.org/

Parallel Programming

• Shared vs Distributed Memory
Programming

• Shared (e.g. OpenMP)
• All CPU cores have access to the same

pool of memory
• Typically, all CPU cores are on the same

CPU node
• Ideal for multi-threaded loops

• Distributed-memory program (e.g.
MPI)

• Each CPU core is given access to a
specific pool of memory, which may or
may not be shared

• A “communicator” designates how each
CPU core can talk to another CPU core

• CPU cores do not have to live on the
same CPU node

Memory (RAM)

CPU Core
#2

CPU Core
#3

CPU Core
#4

Shared Memory Parallelism:
1 task, 4 threads

CPU Core
#1

CPU Core
#2

CPU Core
#3

CPU Core
#4

Distributed Memory Parallelism:
4 tasks, 1 thread per task

CPU Core
#1

Mem
Part #2

Mem
Part #3

Mem
Part#4

Mem
Part #1

Shared Memory Parallelism: OpenMP

• OpenMP is a portable, high-level API that is used to write
multithreaded applications

• It provides a set of directives that can be used to parallelize loops,
regions of code, and entire functions.

• Supported by a wide range of compilers and hardware platforms
(e.g. C/C++, Fortran, Python, etc)

• For loops typically a compiler directive is added before a loop to tell
the compiler that OpenMP is being used:

• #pragma omp parallel

• The environment variable OMP_NUM_TASKS will tell the operating
system how many OpenMP threads to use in the program.

A note on Python and the GIL: A constraint on shared
memory programming

• Python Global Interpreter Lock (GIL)
• A mechanism with Python which allows only one CPU thread to use the

Python interpreter
• The GIL addressed the problem of memory management for Python

programs.
• Releasing the GIL can cause memory leaks if not managed correctly.

• Solutions:
• Use multiprocessing instead of multithreading

• Each process gets its own Python interpreter and memory space

• Module options: mpi4py, multiprocessing

• Use a different interpreter
• Use Cython to release the GIL to allow multithreading within subroutines

Reference: https://realpython.com/python-gil/

https://realpython.com/python-gil/

Distributed Memory Parallelism: MPI
• MPI stands for message-passing interface, standard provided as a library for

exchanging data (called messages) between objects.

• Different libraries have implemented the MPI standard:

• OpenMPI

• MPICH

• Intel MPI

• Objects that can be used to send messages are separated by memory

• Can be entire CPU nodes, or CPU cores, called ranks.

• By breaking up by memory of each tasks, a rank can send messages theoretically
anywhere as long as there is another layer of network communication

• MPI most commonly uses Infiniband for node-to-node communication

• Intra-node communication uses CPU architecture

Distributed Memory Parallelism: MPI

• It provides a set of functions for sending and receiving
messages, as well as for synchronizing the execution of
different processes. Common functions:

• Send a message from one rank to another: MPI_SEND

• Receive a message from a rank: MPI_RECV

• Broadcast the same message to all ranks from a
particular rank: MPI_BCAST

• Take a message from multiple ranks to a single rank:
MPI_GATHER

• Block messages from continuing until all ranks have
finished: MPI_BARRIER

Choosing between Shared vs Distributed Memory
Parallelism
• Shared Memory Parallel is ideal for:

• Single computer/node workloads

• Speeding up for-loops
• By splitting up the work across loop iterations

• Distributed Memory Parallel works best for
• Large memory workloads that require multiple compute nodes

• Shared and distributed memory parallel programming can
sometimes be combined

• Called hybrid parallel programming
• Combining MPI and OpenMP

Summary of useful Slurm commands

• sbatch <job_script_filename> - submit job
• salloc –n1 - submit an interactive job with 1 task
• squeue – View job queue
• squeue --me – View job queue for your jobs
• sacct –j <jobid> - Get info on a particular job ID
• sinfo – Show info on nodes
• scontrol show node <name> - show info on a
particular node

• scancel $JOBID – Cancel a specific job
• scancel --me – Cancel all your current jobs

GPU: Further Accelerate computational workloads

• Use graphical processing units (GPUs)
• NVIDIA

• The CUDA library is by far the most popular GPU computing language
• Provides an API to use NVIDIA CUDA codes

• Popular CUDA uses:
• AI/ML: PyTorch, Tensorflow

• Molecular Dynamics: LAMMPS, GROMACS

• Scientific Visualization: Paraview

• OpenCL
• Open source alternative to CUDA

• Works on AMD, NVIDIA, and Intel GPUs

• HIP (Heterogeneous-Compute Interface)
• GPU acceleration library developed by AMD

Limitations to GPUs

• Hardware is more expensive and less widely available
• Also true if paying for time on cloud compute (e.g. AWS)

• Programming for GPUs requires more setup
• Programs like GROMACS support this for some physical solvers

• Not all workloads can be easily ported to GPUs

Final Takeaways

• When developing your own scientific programs, get the serial
case working as efficiently as possible (within time constraints)

• Try different libraries, compiler options, etc.

• Run benchmarks to compare setups

• When jumping to parallel programming
• Understand the differences between shared and distributed memory

parallel programming

• Leverage established libraries to implement parallel programming
methods

• Use software with these libraries already in use (e.g. GROMACS)

And exploration of SLURM commands

Lab #2: Running Parallel Code: GROMACS

Further Resources

Python Parallel Processing:
https://wiki.python.org/moin/ParallelProcessing

Parallel Programming with MPI for Python:
https://rabernat.github.io/research_computing/parallel-programming-
with-mpi-for-python.html

Intro to F2Py:
https://www2.atmos.umd.edu/~dkleist/docs/pythonTraining/Slides/F2
Py_SSSO.pdf

OpenMPI: Open MPI: Open Source High Performance Computing
(open-mpi.org)

OpenMP: Specifications – OpenMP

NVIDIA CUDA Toolkit: CUDA Toolkit - Free Tools and Training | NVIDIA
Developer

https://wiki.python.org/moin/ParallelProcessing
https://rabernat.github.io/research_computing/parallel-programming-with-mpi-for-python.html
https://rabernat.github.io/research_computing/parallel-programming-with-mpi-for-python.html
https://www2.atmos.umd.edu/~dkleist/docs/pythonTraining/Slides/F2Py_SSSO.pdf
https://www2.atmos.umd.edu/~dkleist/docs/pythonTraining/Slides/F2Py_SSSO.pdf
https://www.open-mpi.org/
https://www.open-mpi.org/
https://www.openmp.org/specifications/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit

	Slide 1: Research Computing at Mines Workshop Serial and Parallel Computing
	Slide 2: Recap of Day 1
	Slide 3: Goals for Day 2
	Slide 4: HPC Resource Usage
	Slide 5: Serial vs Parallel Computing
	Slide 6: Note: Optimization before Parallelization!
	Slide 7: How to profile Python code
	Slide 8: A starting point for optimization: Writing an ODE solver
	Slide 9: Lab #1: Serial Python Optimization
	Slide 10: Lab #1 Summary: Profiling multiple versions of our ODE code
	Slide 11: Parallel Programming
	Slide 12: Shared Memory Parallelism: OpenMP
	Slide 13: A note on Python and the GIL: A constraint on shared memory programming
	Slide 14: Distributed Memory Parallelism: MPI
	Slide 15: Distributed Memory Parallelism: MPI
	Slide 16: Choosing between Shared vs Distributed Memory Parallelism
	Slide 17: Summary of useful Slurm commands
	Slide 18: GPU: Further Accelerate computational workloads
	Slide 19: Limitations to GPUs
	Slide 20: Final Takeaways
	Slide 21: Lab #2: Running Parallel Code: GROMACS
	Slide 22: Further Resources

