Research Computing at Mines Workshop
Serial and Parallel Computing

September 4, 2024

Presented by:
Nicholas A. Danes, PhD

Computational Scientist
Research Computing Group (IT)

Recap of Day 1

Overview of the world of Cyberinfrastructure & Research Computing

HPC options for Mines Researchers

Overview of skills needed to be a successful researcher on HPC
« Linux/Bash
e Slurm/Job Scheduler
 Parallel Computing
« Computational Notebook Practices

Intro to Linux/Bash Lab
Overview of Job Schedulers, SLURM and Python
Intro to Slurm & Python Lab

Goals for Day 2

« Overview of Serial vs Parallel Computing
A case study using a Python serial code (Lab)

 Parallel Programming Overview
 Shared vs Distributed Memory
* MP]
* OpenMP
 Lab on using parallelized software: GROMACS

HPC Resource Usage

e How do | use them?

« Most programs spawn 1 process (“task” in Slurm) and use one thread
(“cpu” in Slurm)
« On a desktop, some programs can see how many CPU cores you have and
request that many threads for the process and use them
« Examples: Some MATLAB functions, Games using DX12, Chrome/Firefox

* Slurm does not know how your program will use the resources you
give it
« |f you give it 12 cores (“cpus”) but program only works with 1 core, those 11
cores will idle and do nothing

« To think about how to utilize HPC resources, we need to learn how
parallel programming/processing is implemented.

Serial vs Parallel Computing

* When a program uses a single process (“task”) with 1 core
(“cpu”), we say it is a serial computing program.

« When a program uses multiple cores, we say it is a parallel
computing program.

 Before thinking about parallel computing, we need to focus
on how well the program performs with serial computing.

Note: Optimization before Parallelization!

* “Premature optimization is the root of all evil’ - Donald Knuth

« Often, writing your code to run as fast as possible (within
reason) with a single core is necessary before thinking about
parallelization.

« We will explore optimization with a simple Python code for a
single core next!

How to profile Python code

* cProfile
» Gives you a breakdown of all functions’ runtime in a code
* Multiple ways to use it:

e Call it in the command line:
$ python -m cProfile myscript.py

 Call it in another script:

import cProfile

cProfile.run ("mycode.main () ")

« Other options: lineprofiler, timeit, pstats

References: https://towardsdatascience.com/how-to-profile-your-code-in-python-e70c834fad89

https://github.com/pyutils/line profiler

https://towardsdatascience.com/how-to-profile-your-code-in-python-e70c834fad89
https://github.com/pyutils/line_profiler

A starting point for optimization:
Writing an ODE solver

Consider the initial value problem of the form:
y'(t) = f(t,y)
y(to) = Yo
which can numerically solved using Heun’s Method:
plitt] = il 4 p £l 1)
ylit1] = ylil 4 g(f(t[i],y[i]) + f(t[i+1],y[i+1]))

Where h is the time step size, i Is the time step index, and y denotes the intermediate
solution. Let’s use this problem to see how to optimize writing scientific code for Python!

Lab #1: Serial Python Optimization

Copy the workshop materials using the following command:
cp /sw/BUILD/src/workshop/Workshop Fall2024 day2.tar.gz ~/scratch
And go to that directory and untar it:
cd ~/scratch §& tar -xf Workshop_ Fall2024 day2.tar.gz
cd Workshop Fall2024/rk2 _python && 1s
Using Open OnDemand Interface
Go To:

https://wendian-ondemand.mines.edu/

Lab #1 Summary: Profiling multiple versions of our
ODE code

* Pure Python
 Surprisingly Performant!

« NumPy only
« Performs poorly due to lack of vectorization

 NumPy + Cython
* https://cython.org/

« Cython effectively allows one to write static-typed code in
Python/”Cython”, which is parsed into C and compiled into a Python

module.

https://cython.org/

Shared Memory Parallelism:
1 task, 4 threads

Para”el Prog rammi ng CPU Core CPU Core CPU Core CPU Core

#1 #2 #3 #4

« Shared vs Distributed Memory
Programming y v

« Shared (e.g. OpenMP)
* All CPU cores have access to the same
pool of memory Memory (RAM)

. 'I(}I/:Pically, all CPU cores are on the same

U node
« |deal for multi-threaded loops Distributed Memory Parallelism:
* Distributed-memory program (e.g. 4 tasks, 1 thread per task

MPI
. %ach CPU core is given access to a CPU Core g CPU Core | CPU Core | CPU Core
specific pool of memory, which may or #1 #2 #3 #4
may not be shared

« A“communicator” designates how each
CPU core can talk to another CPU core

. ggrrL]Jecg{DeS ggdneot have to live on the Mem Mem Mem Mem
Part #1 Part #2 Part #3 Part#4

Shared Memory Parallelism: OpenMP

« OpenMP is a portable, high-level API that is used to write
multithreaded applications

e It provides a set of directives that can be used to parallelize loops,
regions of code, and entire functions.

 Supported by a wide range of compilers and hardware platforms
(e.g. C/C++, Fortran, Python, etc)

 For loops typically a compiler directive is added before a loop to tell
the compiler that OpenMP is being used:

« #pragma omp parallel

* The environment variable OMP_NUM_TASKS will tell the operating

system how many OpenMP threads to use in the program.

A note on Python and the GIL: A constraint on shared
memory programming

« Python Global Interpreter Lock (GIL)

« A mechanism with Python which allows only one CPU thread to use the
Python interpreter

« The GIL addressed the problem of memory management for Python
programs.

* Releasing the GIL can cause memory leaks if not managed correctly.

* Solutions:

« Use multiprocessing instead of multithreading
« Each process gets its own Python interpreter and memory space
« Module options: mpidpy, multiprocessing

« Use a different interpreter
« Use Cython to release the GIL to allow multithreading within subroutines
Reference: https://realpython.com/python-gil/

https://realpython.com/python-gil/

Distributed Memory Parallelism: MPI

« MPI stands for message-passing interface, standard provided as a library for
exchanging data (called messages) between objects.

- Different libraries have implemented the MPI standard:
* OpenMPI
« MPICH
* Intel MPI
 Objects that can be used to send messages are separated by memory

 Can be entire CPU nodes, or CPU cores, called ranks.

By breaking up by memory of each tasks, a rank can send messages theoretically
anywhere as long as there is another layer of network communication

« MPI most commonly uses Infiniband for node-to-node communication
e Intra-node communication uses CPU architecture

Distributed Memory Parallelism: MPI

* |t provides a set of functions for sending and receiving
messages, as well as for synchronizing the execution of
different processes. Common functions:

« Send a message from one rank to another: MPI_SEND
* Receive a message from a rank: MPI_RECV

» Broadcast the same message to all ranks from a
particular rank: MPI_BCAST

« Take a message from multiple ranks to a single rank:
MPI_GATHER

 Block messages from continuing until all ranks have
finished: MP1_BARRIER

Choosing between Shared vs Distributed Memory
Parallelism
« Shared Memory Parallel is ideal for:

 Single computer/node workloads

« Speeding up for-loops

By splitting up the work across loop iterations

* Distributed Memory Parallel works best for
« Large memory workloads that require multiple compute nodes

« Shared and distributed memory parallel programming can
sometimes be combined

 Called hybrid parallel programming
e Combining MPI and OpenMP

Summary of useful Slurm commands

« shatch <job_script_filename> - submit job

salloc —nl1 - submit an 1nteractive job with 1 task
squeue — View job queue

squeue --me — View job queue for your jobs

sacct —J <jobid> - Get i1info on a particular job ID
sinfo — Show 1nfo on nodes

scontrol show node <name> - show i1nfo on a
particular node

e scancel $JOBID - Cancel a specific job
« scancel --me — Cancel all your current jobs

GPU: Further Accelerate computational workloads

« Use graphical processing units (GPUs)
* NVIDIA

« The CUDA library is by far the most popular GPU computing language
« Provides an APl to use NVIDIA CUDA codes

« Popular CUDA uses:
« Al/ML: PyTorch, Tensorflow
« Molecular Dynamics: LAMMPS, GROMACS
« Scientific Visualization: Paraview

* OpenCL
« Open source alternative to CUDA
« Works on AMD, NVIDIA, and Intel GPUs

« HIP (Heterogeneous-Compute Interface)
« GPU acceleration library developed by AMD

Limitations to GPUs

« Hardware is more expensive and less widely available
 Also true if paying for time on cloud compute (e.g. AWS)

* Programming for GPUs requires more setup
* Programs like GROMACS support this for some physical solvers

* Not all workloads can be easily ported to GPUs

Final Takeaways

* When developing your own scientific programs, get the serial
case working as efficiently as possible (within time constraints)
* Try different libraries, compiler options, etc.
* Run benchmarks to compare setups

* When jumping to parallel programming
» Understand the differences between shared and distributed memory
parallel programming

» Leverage established libraries to implement parallel programming
methods

« Use software with these libraries already in use (e.g. GROMACYS)

Lab #2: Running Parallel Code: GROMACS

And exploration of SLURM commands

Further Resources

Python Parallel Processing:
https://wiki.python.org/moin/ParallelProcessing

Parallel Programming with MPI for Python:
https://rabernat.github.io/research computing/parallel-programming-
with-mpi-for-python.html

Intro to F2Py:
https://www?2.atmos.umd.edu/~dkleist/docs/pythonTraining/Slides/F2
Py SSSO.pdf

OpenMPI: Open MPI: Open Source High Performance Computing
(open-mpi.org)

OpenMP: Specifications - OpenMP

NVIDIA CUDA Toolkit: CUDA Toolkit - Free Tools and Training | NVIDIA
Developer

https://wiki.python.org/moin/ParallelProcessing
https://rabernat.github.io/research_computing/parallel-programming-with-mpi-for-python.html
https://rabernat.github.io/research_computing/parallel-programming-with-mpi-for-python.html
https://www2.atmos.umd.edu/~dkleist/docs/pythonTraining/Slides/F2Py_SSSO.pdf
https://www2.atmos.umd.edu/~dkleist/docs/pythonTraining/Slides/F2Py_SSSO.pdf
https://www.open-mpi.org/
https://www.open-mpi.org/
https://www.openmp.org/specifications/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit

	Slide 1: Research Computing at Mines Workshop Serial and Parallel Computing
	Slide 2: Recap of Day 1
	Slide 3: Goals for Day 2
	Slide 4: HPC Resource Usage
	Slide 5: Serial vs Parallel Computing
	Slide 6: Note: Optimization before Parallelization!
	Slide 7: How to profile Python code
	Slide 8: A starting point for optimization: Writing an ODE solver
	Slide 9: Lab #1: Serial Python Optimization
	Slide 10: Lab #1 Summary: Profiling multiple versions of our ODE code
	Slide 11: Parallel Programming
	Slide 12: Shared Memory Parallelism: OpenMP
	Slide 13: A note on Python and the GIL: A constraint on shared memory programming
	Slide 14: Distributed Memory Parallelism: MPI
	Slide 15: Distributed Memory Parallelism: MPI
	Slide 16: Choosing between Shared vs Distributed Memory Parallelism
	Slide 17: Summary of useful Slurm commands
	Slide 18: GPU: Further Accelerate computational workloads
	Slide 19: Limitations to GPUs
	Slide 20: Final Takeaways
	Slide 21: Lab #2: Running Parallel Code: GROMACS
	Slide 22: Further Resources

