Intro to MPI using Python: Parallel Theory & MPI Overview

November 17, 2024

Presented by: Nicholas A. Danes, PhD Computational Scientist Research Computing Group, Mines IT

Preliminaries

- HPC Experience (one of these):
 - Know the basics of
 - Linux Shell
 - Python 3
 - Scientific Computing
 - Active HPC User
 - Mines specific: Wendian, Mio
 - Off-premise: Cloud, NSF Access, CU Boulder Alpine, etc.
 - Previously taken our "Intro to HPC" workshop
 - Offered once per semester

Review of Parallel vs Serial Computing

- When a program uses a single process ("task") with 1 core ("cpu"), we say it is a **serial computing** program.
- When a program uses multiple cores, we say it is a **parallel computing** program.
- Typically, we try to optimize a serial computing program before trying to write it in parallel
- For this workshop, we're going to assume we are well equipped to deal with the serial code situation

Parallel Programming Models

- Shared vs Distributed Memory Programming
 - Shared (e.g. OpenMP)
 - All CPU cores have access to the same pool of memory
 - Typically, all CPU cores are on the same CPU node
 - Ideal for multi-threaded loops
 - Distributed-memory program (e.g. MPI)
 - Éach CPU core is given access to a specific pool of memory, which may or may not be shared
 - A "communicator" designates how each CPU core can talk to another CPU core
 - CPU cores do not have to live on the same CPU node

Shared Memory Parallelism: 1 task, 4 threads

Distributed Memory Parallelism: 4 tasks, 1 thread per task

Overview of MPI

- MPI stands for **m**essage-**p**assing **i**nterface, standard provided as a library for exchanging data (called messages) between objects.
- Different libraries have implemented the MPI standard:
 - OpenMPI
 - MPICH
 - Intel MPI
- Typically used with C, C++ and Fortran
- Objects that can be used to send messages are separated by memory
 - Can be entire CPU nodes, or CPU cores (or even a GPU!)
 - By breaking up by memory of each tasks, a rank can send messages theoretically anywhere as long as there is another layer of network communication
 - MPI most commonly **uses Infiniband** for node-to-node communication
 - Intra-node communication uses CPU architecture
 - Called vader/BTL on OpenMPI
- There are many moving parts involving networking for MPI
 - For more information: easybuild tech talks 01 OpenMPI part2 20200708.pdf (open-mpi.org)

Heuristics for writing MPI Programs: Overview

- Typically, MPI programs take a single program, multiple data (SPMD) model approach
 - Single program: Encapsulate all desired functions and routines under one program
 - Multiple data: The single program is duplicated with multiple copies of data, and runs on the system each on its own **process.**
- Think about your largest data size and how it can be broken up into smaller chunks
- The multiple processes then can communicate (i.e. share data) using MPI library functions written by the user
- MPI data communication steps should be brought to a minimum, as they can slow down performance *significantly.*

Common Use Case #1: Perfectly Parallel Computations

- Perfectly (or trivially) parallel programs are ones that do not require any MPI communication functions
- MPI is still useful, since it allows the program to run across more than one computer/compute node
- Examples include:
 - Matrix/Vector Addition
 - Markov Chain Monte Carlo (MCMC) Simulations

Common Use Case #2: Domain Decomposition for Partial Differential Equations

- Solving a spatial partial differential equation
 - Domain is a 1-3D mesh with multiple grid point/cells that can be broken up using domain decomposition.
 - Each processor contains a subset of the domain's mesh and solves the numerical problem for the differential equation on that subdomain
 - Derivatives in differential equations typically use finite difference/volume/element approximations, which require knowing values of a function around the evaluated grid point
 - This can require data from other processors
 - MPI can be used to send grid data on the edges of the decomposed domain to the other processors
 - Commonly referred to as "ghost" cells/nodes/volumes
 - Popular frameworks provide tracking these grid points within the mesh object
 - parMETIS,SCOTCH, PETSc, Ansys Fluent

Important MPI concepts

- Initialize MPI must explicitly started in the code
 - Helps MPI identify what resources were requested
- Rank How the number of processes are labeled/tracked
 - Common practice: ranks = # of CPU cores requested
 - Other practices: 1 compute node per rank, 1 GPU card per rank
- Size Total number of ranks
 - In most MPI-only programs, size = number of processors requested
- Finalize Close MPI within the program

Important MPI concepts

- Communicator How ranks know their relation to others
 - "MPI_COMM_WORLD" Every rank knows every other rank
 - "MPI_COMM_SELF" Every rank knows itself
- Communication Types
 - Point-to-Point Synchronized MPI function between ranks
 - Send/Receive Every send must have a receive
 - Calls can be blocking or non-blocking
 - Collective MPI function on all ranks
 - Broadcast One rank sends data to all other ranks
 - Scatter One rank sends a chunk of data to each rank
 - Gather One rank receives data from all other ranks
 - One-sided
 - Not covering this

MPI with Python: mpi4py

- mpi4py is a Python library that allows one to use MPI-2 C++ style bindings with Python in an object-oriented way
- Supports various python objects for the buffer interface
 - NumPy Arrays
 - Pickled Objects (lists, dictionaries, etc)
- Documentation: <u>https://mpi4py.readthedocs.io/en/stable/</u>
- We will be using mpi4py for this entire workshop!

mpi4py vs Other Parallel Python Options

- mpi4py alternatives Also implements the MPI standard in python
 - PyPar: <u>https://github.com/daleroberts/pypar</u>
 - Scientific Python: https://github.com/khinsen/ScientificPython/
 - pyMPI: <u>https://sourceforge.net/projects/pympi/</u>
- Mpi4py.futures: <u>mpi4py.futures MPI for Python 4.0.1 documentation</u>
 - Based on concurrent.futures (standard Python) to pool workers. Mpi4py futures lets us go across multiple nodes.
- Multiprocessing spawns multiple processes (called workers) which can distribute work for a function
 - Easier to implement, but limited to single machine/node
 - There are some communication options: <u>multiprocessing Process-based</u> parallelism — Python 3.12.2 documentation
- Dask Provides a full parallel job scheduler framework in Python
 - More high-level and communication is more implicit
 - Task-scheduling and works well with Jupyter Notebooks
 - Can used in combination with MPI (DASK-MPI)
 - More details: <u>https://www.dask.org/</u>

Lab #1 (15-20 min): 1. Setting up mpi4py anaconda environment 2. Running our first programs

Today's files: /sw/examples/MPI_Workshop_Nov172024.tar.gz

Basic Parallel Computing Theory

- We use parallelization to improve performance of scientific codes
 - How do we measure that?
 - Can we predict performance based on various factors?
 - Serial performance
 - Hardware
 - Problem size
 - Can we determine how the problem *scales* as we increase compute resources?

Measuring Parallel Performance

Variable	Description
Р	Number of processors ("ranks")
n	Problem size (e.g <i>n</i> is number of mesh cells, etc)
$T_{\{P,max\}}$	Max wall time with <i>P</i> processors
$T_{\{P,avg\}}$	Average wall time across <i>P</i> processors
$T_{\{P,m\}}$	Wall time from the <i>m</i> -th out of <i>P</i> processors
S_P	Speedup with <i>P</i> processors
E_P	Efficiency with <i>P</i> processors
eta_P	Load balance with <i>P</i> processors

Speed-up, Efficiency, & Load-Balancing

• **Speed-up**: the ratio of the serial wall time to the parallel (with *P* processors) wall time

$$S_P = \frac{T_{\{1,max\}}}{T_{\{P,max\}}}$$

- When $S_P = P$, the speed-up is **ideal**.
- Efficiency:

$$E_P = \frac{S_P}{P}$$

- When $E_P = 1$, the efficiency is **ideal**.
- Load-balancing:

$$\beta_P = \frac{T_{\{P,avg\}}}{T_{\{P,max\}}}$$

When $\beta_P = 1$, the efficiency is **ideal**.

Basic Parallel Computing Theory: Amdahl's Law

- In 1967, Gene Amdhal proposed a way to predict how much a code can scale due to a serial bottleneck [4].
 - Amdhal's Law can be summarized with the following equation relating to speedup:

$$S_{P,Am} = \frac{1}{F_s - \frac{1 - F_s}{P}}$$

Where *F_s* is the *theoretical* serial fraction, the proportion of the runtime of a code that is run with only 1 processor.

Basic Parallel Computing Theory: Amdahl's Law

- Amdahl's law shows a a severe constraint to parallel scalability if a large portion of your code is in serial.
- Plot on the right shows Amdahl's Law with P = 1024 processors
 - If the serial fraction is about 0.5% of the runtime, then we see about a 167 times speedup, implying a 167/1024 ~ 16.3% parallel efficiency.
 - If the serial fraction is about 10% of the runtime, then the speedup drops to about 10, 10/1024 ~ about 0.97% parallel efficiency.
- Main takeaway: Amdahl's Law states that minimizing the time a code spends in serial is crucial for scaling up your parallel program.

Amdahl's Law Limitations

- Amdahl's Law makes many assumptions about your compute situation
 - Doesn't account for hardware limitations
 - CPU configuration (cache, memory, etc)
 - Disk performance (read/write speeds, etc)
 - The fraction of the code spend in *parallel* could also depend on the number of processors, i.e.

$$1-F_s=F_P=F_P(P)$$

- It assumes that your problem size is fixed
- In practice, when performing a benchmark with increasing number of processors with a **fixed problem size**, we call this **Strong Scaling**.

Gustafson's Law

- In response, John Gustafson argued that the assumptions from Amdahl's Law for was not appropriate for all parallel workloads [4].
 - In particular, the serial time spent by the processor was *not* independent of the number of processors
 - More processors used on a CPU means the cores will compete for memory bandwidth
- As an approximation, Gustafson approximated speedup by assuming the parallel part of the program is linearly proportional to the number of processors: $S_{P,Gu} = P + (1 - P)F_s$
- This equation is often referred to as *scaled speedup*.
- When one increases the problem size with the number of processors linearly, we call this **weak scaling.**

Lab #2 (15-20 min): Calcuating pi in parallel using Leibiniz's formula

Today's files: /sw/examples/MPI_Workshop_Nov172024.tar.gz

References

- [1] <u>https://www.cs.uky.edu/~jzhang/CS621/chapter7.pdf</u>
- [2] <u>https://www.youtube.com/watch?v=pDBIoil-LTk</u>
- [3] <u>https://www-</u> inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
- [4] Gustafson, John L. "Reevaluating Amdahl's law." Communications of the ACM 31, no. 5 (1988): 532-533: <u>http://www.johngustafson.net/pubs/pub13/amdahl.htm</u>
- [5] <u>https://xlinux.nist.gov/dads/HTML/singleprogrm.html</u>

