
Intro to MPI using Python: Parallel Theory &
MPI Overview

November 17, 2024

Presented by:

Nicholas A. Danes, PhD

Computational Scientist

Research Computing Group, Mines IT

Preliminaries

• HPC Experience (one of these):
• Know the basics of

• Linux Shell

• Python 3

• Scientific Computing

• Active HPC User
• Mines specific: Wendian, Mio

• Off-premise: Cloud, NSF Access, CU Boulder Alpine, etc.

• Previously taken our “Intro to HPC” workshop
• Offered once per semester

Review of Parallel vs Serial Computing

• When a program uses a single process (“task”) with 1 core
(“cpu”), we say it is a serial computing program.

• When a program uses multiple cores, we say it is a parallel
computing program.

• Typically, we try to optimize a serial computing program
before trying to write it in parallel

• For this workshop, we’re going to assume we are well
equipped to deal with the serial code situation

Parallel Programming Models

• Shared vs Distributed Memory
Programming

• Shared (e.g. OpenMP)
• All CPU cores have access to the same

pool of memory
• Typically, all CPU cores are on the same

CPU node
• Ideal for multi-threaded loops

• Distributed-memory program (e.g.
MPI)

• Each CPU core is given access to a
specific pool of memory, which may or
may not be shared

• A “communicator” designates how each
CPU core can talk to another CPU core

• CPU cores do not have to live on the
same CPU node

Memory (RAM)

CPU Core
#2

CPU Core
#3

CPU Core
#4

Shared Memory Parallelism:
1 task, 4 threads

CPU Core
#1

CPU Core
#2

CPU Core
#3

CPU Core
#4

Distributed Memory Parallelism:
4 tasks, 1 thread per task

CPU Core
#1

Mem
Part #2

Mem
Part #3

Mem
Part#4

Mem
Part #1

Overview of MPI
• MPI stands for message-passing interface, standard provided as a library for exchanging data (called

messages) between objects.

• Different libraries have implemented the MPI standard:

• OpenMPI

• MPICH

• Intel MPI

• Typically used with C, C++ and Fortran

• Objects that can be used to send messages are separated by memory

• Can be entire CPU nodes, or CPU cores (or even a GPU!)

• By breaking up by memory of each tasks, a rank can send messages theoretically anywhere as long as
there is another layer of network communication

• MPI most commonly uses Infiniband for node-to-node communication

• Intra-node communication uses CPU architecture

• Called vader/BTL on OpenMPI

• There are many moving parts involving networking for MPI

• For more information: easybuild_tech_talks_01_OpenMPI_part2_20200708.pdf (open-mpi.org)

https://www.open-mpi.org/video/general/easybuild_tech_talks_01_OpenMPI_part2_20200708.pdf

Heuristics for writing MPI Programs: Overview

• Typically, MPI programs take a single program, multiple data (SPMD)
model approach

• Single program: Encapsulate all desired functions and routines under one program

• Multiple data: The single program is duplicated with multiple copies of data, and runs
on the system each on its own process.

• Think about your largest data size and how it can be broken up into
smaller chunks

• The multiple processes then can communicate (i.e. share data) using MPI
library functions written by the user

• MPI data communication steps should be brought to a minimum, as they
can slow down performance significantly.

Common Use Case #1: Perfectly Parallel
Computations

• Perfectly (or trivially) parallel programs are ones that do not require
any MPI communication functions

• MPI is still useful, since it allows the program to run across more than
one computer/compute node

• Examples include:
• Matrix/Vector Addition

• Markov Chain Monte Carlo (MCMC) Simulations

Common Use Case #2: Domain Decomposition for
Partial Differential Equations

• Solving a spatial partial differential equation
• Domain is a 1-3D mesh with multiple grid point/cells that can be broken up using

domain decomposition.

• Each processor contains a subset of the domain’s mesh and solves the numerical
problem for the differential equation on that subdomain

• Derivatives in differential equations typically use finite difference/volume/element
approximations, which require knowing values of a function around the evaluated
grid point

• This can require data from other processors

• MPI can be used to send grid data on the edges of the decomposed domain to the
other processors

• Commonly referred to as “ghost” cells/nodes/volumes

• Popular frameworks provide tracking these grid points within the mesh object

• parMETIS,SCOTCH, PETSc, Ansys Fluent

Important MPI concepts

• Initialize – MPI must explicitly started in the code
• Helps MPI identify what resources were requested

• Rank – How the number of processes are labeled/tracked
• Common practice: ranks = # of CPU cores requested

• Other practices: 1 compute node per rank, 1 GPU card per rank

• Size – Total number of ranks
• In most MPI-only programs, size = number of processors requested

• Finalize – Close MPI within the program

Important MPI concepts

• Communicator – How ranks know their relation to
others

• “MPI_COMM_WORLD” – Every rank knows every other rank

• “MPI_COMM_SELF” – Every rank knows itself

• Communication Types
• Point-to-Point – Synchronized MPI function between ranks

• Send/Receive – Every send must have a receive

• Calls can be blocking or non-blocking

• Collective - MPI function on all ranks

• Broadcast – One rank sends data to all other ranks

• Scatter – One rank sends a chunk of data to each rank

• Gather – One rank receives data from all other ranks

• One-sided

• Not covering this

1 2

0

1 2

0

MPI_COMM_WORLD

MPI_COMM_SELF

MPI with Python: mpi4py

• mpi4py is a Python library that allows one to use MPI-2 C++
style bindings with Python in an object-oriented way

• Supports various python objects for the buffer interface
• NumPy Arrays

• Pickled Objects (lists, dictionaries, etc)

• Documentation: https://mpi4py.readthedocs.io/en/stable/

• We will be using mpi4py for this entire workshop!

https://mpi4py.readthedocs.io/en/stable/

mpi4py vs Other Parallel Python Options
• mpi4py alternatives – Also implements the MPI standard in python

• PyPar: https://github.com/daleroberts/pypar
• Scientific Python: https://github.com/khinsen/ScientificPython/
• pyMPI: https://sourceforge.net/projects/pympi/

• Mpi4py.futures: mpi4py.futures — MPI for Python 4.0.1 documentation
• Based on concurrent.futures (standard Python) to pool workers. Mpi4py futures lets us go across multiple

nodes.

• Multiprocessing – spawns multiple processes (called workers) which can distribute
work for a function

• Easier to implement, but limited to single machine/node
• There are some communication options: multiprocessing — Process-based

parallelism — Python 3.12.2 documentation

• Dask – Provides a full parallel job scheduler framework in Python
• More high-level and communication is more implicit
• Task-scheduling and works well with Jupyter Notebooks
• Can used in combination with MPI (DASK-MPI)
• More details: https://www.dask.org/

https://github.com/daleroberts/pypar
https://github.com/khinsen/ScientificPython/
https://sourceforge.net/projects/pympi/
https://mpi4py.readthedocs.io/en/stable/mpi4py.futures.html
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://www.dask.org/

Lab #1 (15-20 min):
1. Setting up mpi4py anaconda environment
2. Running our first programs

Today’s files:
/sw/examples/MPI_Workshop_Nov172024.tar.gz

Basic Parallel Computing Theory

• We use parallelization to improve performance of
scientific codes

• How do we measure that?

• Can we predict performance based on various factors?
• Serial performance

• Hardware

• Problem size

• Can we determine how the problem scales as we increase
compute resources?

Measuring Parallel Performance

Variable Description

𝑃 Number of processors (“ranks“)

𝑛 Problem size (e.g 𝑛 is number of mesh cells, etc)

𝑇 𝑃,𝑚𝑎𝑥 Max wall time with 𝑃 processors

𝑇 𝑃,𝑎𝑣𝑔 Average wall time across 𝑃 processors

𝑇 𝑃,𝑚 Wall time from the 𝑚-th out of 𝑃 processors

𝑆𝑃 Speedup with 𝑃 processors

𝐸𝑃 Efficiency with 𝑃 processors

β𝑃 Load balance with 𝑃 processors

Speed-up, Efficiency, & Load-Balancing

• Speed-up: the ratio of the serial wall time to the parallel (with 𝑃 processors) wall
time

𝑆𝑃 =
𝑇 1,𝑚𝑎𝑥

𝑇{𝑃,𝑚𝑎𝑥}

• When 𝑆𝑃 = 𝑃, the speed-up is ideal.

• Efficiency:

𝐸𝑃 =
𝑆𝑃

𝑃

• When 𝐸𝑃 = 1, the efficiency is ideal.

• Load-balancing:

β𝑃 =
𝑇 𝑃,𝑎𝑣𝑔

𝑇{𝑃,𝑚𝑎𝑥}

When β𝑃 = 1, the efficiency is ideal.

Basic Parallel Computing Theory: Amdahl’s Law

• In 1967, Gene Amdhal proposed a way to predict how much a code
can scale due to a serial bottleneck [4].

• Amdhal’s Law can be summarized with the following equation
relating to speedup:

S𝑃,𝐴𝑚 =
1

𝐹𝑠 −
1 − 𝐹𝑠

𝑃
Where 𝐹𝑠 is the theoretical serial fraction, the proportion of the
runtime of a code that is run with only 1 processor.

Basic Parallel Computing Theory: Amdahl’s Law

• Amdahl’s law shows a a severe constraint to
parallel scalability if a large portion of your code is
in serial.

• Plot on the right shows Amdahl’s Law with 𝑃 =
1024 processors

• If the serial fraction is about 0.5% of the
runtime, then we see about a 167 times
speedup, implying a 167/1024 ~ 16.3% parallel
efficiency.

• If the serial fraction is about 10% of the
runtime, then the speedup drops to about 10,
10/1024 ~ about 0.97% parallel efficiency.

• Main takeaway: Amdahl’s Law states that
minimizing the time a code spends in serial is
crucial for scaling up your parallel program.

Amdahl’s Law Limitations

• Amdahl’s Law makes many assumptions about your compute
situation

• Doesn’t account for hardware limitations

• CPU configuration (cache, memory, etc)

• Disk performance (read/write speeds, etc)

• The fraction of the code spend in parallel could also depend on
the number of processors, i.e.

1 − 𝐹𝑠 = 𝐹𝑃 = 𝐹𝑃(𝑃)

• It assumes that your problem size is fixed

• In practice, when performing a benchmark with increasing number
of processors with a fixed problem size, we call this Strong
Scaling.

Gustafson’s Law
• In response, John Gustafson argued that the

assumptions from Amdahl’s Law for was not
appropriate for all parallel workloads [4].

• In particular, the serial time spent by the processor
was not independent of the number of processors

• More processors used on a CPU means the
cores will compete for memory bandwidth

• As an approximation, Gustafson approximated
speedup by assuming the parallel part of the program
is linearly proportional to the number of processors:

S𝑃,𝐺𝑢 = 𝑃 + 1 − 𝑃 F𝑠

• This equation is often referred to as scaled speedup.

• When one increases the problem size with the number
of processors linearly, we call this weak scaling.

Lab #2 (15-20 min):
Calcuating pi in parallel using Leibiniz’s
formula

Today’s files:
/sw/examples/MPI_Workshop_Nov172024.tar.gz

References

• [1] https://www.cs.uky.edu/~jzhang/CS621/chapter7.pdf

• [2] https://www.youtube.com/watch?v=pDBIoil-LTk

• [3] https://www-
inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf

• [4] Gustafson, John L. “Reevaluating Amdahl’s law.”
Communications of the ACM 31, no. 5 (1988): 532-533:
http://www.johngustafson.net/pubs/pub13/amdahl.htm

• [5] https://xlinux.nist.gov/dads/HTML/singleprogrm.html

https://www.cs.uky.edu/~jzhang/CS621/chapter7.pdf
https://www.youtube.com/watch?v=pDBIoil-LTk
https://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
https://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
http://www.johngustafson.net/pubs/pub13/amdahl.htm
https://xlinux.nist.gov/dads/HTML/singleprogrm.html

	Slide 1: Intro to MPI using Python: Parallel Theory & MPI Overview
	Slide 2: Preliminaries
	Slide 3: Review of Parallel vs Serial Computing
	Slide 4: Parallel Programming Models
	Slide 5: Overview of MPI
	Slide 6: Heuristics for writing MPI Programs: Overview
	Slide 7: Common Use Case #1: Perfectly Parallel Computations
	Slide 8: Common Use Case #2: Domain Decomposition for Partial Differential Equations
	Slide 9: Important MPI concepts
	Slide 10: Important MPI concepts
	Slide 11: MPI with Python: mpi4py
	Slide 12: mpi4py vs Other Parallel Python Options
	Slide 13: Lab #1 (15-20 min): 1. Setting up mpi4py anaconda environment 2. Running our first programs
	Slide 14: Basic Parallel Computing Theory
	Slide 15: Measuring Parallel Performance
	Slide 16: Speed-up, Efficiency, & Load-Balancing
	Slide 17: Basic Parallel Computing Theory: Amdahl’s Law
	Slide 18: Basic Parallel Computing Theory: Amdahl’s Law
	Slide 19: Amdahl’s Law Limitations
	Slide 20: Gustafson’s Law
	Slide 21: Lab #2 (15-20 min): Calcuating pi in parallel using Leibiniz’s formula
	Slide 22: References

