

HPC Budgeting and Systems

How to get your HPC workload done?

September 9, 2024

Learning Objectives

- Identify types HPC Workloads
- Explain Simulation Metrics used to benchmark HPC Workflows
- Perform benchmarking and identify efficient job allocation
- Determine allocation allotment to complete a HPC project
- Define the two HPC options from Mines and two off-campus resources

COLORADO SCHOOL OF MINES

Research Computing (rc.mines.edu)

Research Computing (rc.mines.edu)

Type of High-Performance Computing Workloads

From Serial to Parallel and Beyond September 5, 2024

Computational Workloads and Workflows

Serial Workloads

A separate parameter solved on each core/processor

- One protein compared to a binding location
- One mesh-node optimized
- One scenario with a set of parameters
- Temporal/Transient Simulations

Parallel Workflows

Multi-node or Multi-threaded

Single or Multi GPU

Perfectly Parallelization of Serial Workflows

Disk or Memory Resource Requirements

High Memory per CPU High Data Input/Output

Serial Workloads: One Scenario or Parameter

Pressure Level

		Н	1	J
Time	D	A,B,C	A,B,C	A,B,C
	Е	A,B,C	A,B,C	A,B,C
oak	F	A,B,C	A,B,C	A,B,C
S	G	A,B,C	A,B,C	A,B,C

Monte Carlo Simulations

Argonne National Laboratory – Particle Collision Simulations

Parameter Sweeps

Design of Experiment problems – Single parameter change on fixed scenario

Pixel Rendering and Anti-Aliasing

Single pixel rendering reduction in image size

Circuit Value Problems

To solve E you must solve C and D...

To Solve C you must solve A and B $\,$

To solve D you must solve A, B, and C

Large-Scale Iterative Simulations

Unsteady flow, transient, highly iterative simulations

Perfectly Parallel

(Embarrassingly parallel)

Research Computing (rc.mines.edu)

Linear Solutions

Parallel Workflows: Multiple Scenarios or Parameters

Multi- Monte Carlo, Parameter Sweeps, **Pixel Rendering**

Using Multiple jobs to execute the code

Scaling up has no limit

Perfectly Parallel (Embarrassingly parallel)

Large-Scale **Simulations**

Fluid flow simulations with Ansys Fluent, **OpenFoam**

Iterative

Molecular **Dynamics**

Proteins or Material Science using Gromacs, VASP, LAMMPS

Geophysics Simulations

Earthquakes, Inverse-wave problem, etc

Machine Learning

Computer Vision, Large-Language, Neural Networks, Training, Inference, etc.

Optimization Need to Problem Size

High Memory or Data I/O Workflows

High Memory usage to store large matrixes

Computing a large matrix for data reduction

Mesh optimization problems

Visualization of data sets

High Data Input and Output

Image processing of neural networks

Movie frame rendering

File server and database search

Code Development

Un-optimized coding leads to limited problem sizes that often must be simplified

Research Computing (rc.mines.edu)

High-Performance Computing Simulation Metrics

Metrics are everywhere

September 5, 2024

Simulation Reporting Performance

Molecular Dynamics

Nano-seconds of Simulated Time

Time in Actual Day

Computational Fluids Dynamics (CFD)

Iteration	Simulation Time					
Second	Second					
Jobs Completed						
Day						

Machine Learning

Epochs

Hour

Models

Day

Parameters to Determine

Nodes x Cores	Total Jobs	
Total number of Cores used for simulation	Jobs needed to complete research project	
Core Run Time (Cores * Hours)	Storage of Input and Output	
Work done by each CPU (CPUh)	Data sets inputs (multi-use or single-use)	
Cost / (Core-Hour) Wendian = \$0.02/(Core-Hour) AWS (apex.mines.edu) \$0.04 and up and GPUs even more \$96/hour	Storage during & after Simulation S3-Bucket, Orebits, fast NVMe	
Job Parametric Study Number of Simulations to Assess Science Domain	GPU-hour (GPUh) Increased costs for specialize resource Wendian GPU V100 = 6 core-hour or \$0.12	

Research Computing (rc.mines.edu)

Benchmarking HPC and Efficient Jobs

How many cores is enough? September 5, 2024

- Management capabilities
 - Monitoring standard metrics: utilization
 - Metrics designed to identify underperforming systems hardware and software
 - Reporting job level performance data for every job running on the HPC
- 1. A tool to effectively and efficiently use an allocations and optimize HPC resources
- 2. Ability to monitor, diagnose, and tune system performance and measure the performance of all applications running
- 3. Easily obtain detailed analysis of application performance to aid in optimizing code performance
- 4. A diagnostic tool to facilitate HPC planning and analysis
- 5. Metrics to help measure scientific impact.
- 6. Analyses of the operational characteristics of the HPC environment can be carried out at different levels of granularity
 - job, user, or on a system-wide basis.

xdmod.mines.edu

LESS EFFICIENT

 Command Line Utility (after job completion)

[rgilmore@wendian001 ~]\$ seff 23942161 Job ID: 23942161 Array Job ID: 23942161_0 Cluster: wendian User/Group: ndanes/ndanes State: FAILED (exit code 1) Nodes: 1 Cores per node: 4 CPU Utilized: 00:00:01 CPU Efficiency: 25.00% of 00:00:04 core-walltime Job Wall-clock time: 00:00:01 Memory Utilized: 1.52 MB Memory Efficiency: 0.01% of 20.37 GB

CONTAINER_FILE=/sw/apps/singularity-images/r_project_4.3.1_rslurm.sif srun apptainer run -B /usr/bin:/opt,\$PWD:\$HOME \$CONTAINER_FILE Rscript my_rslurm.R

Cyber-Infrastructure and Advanced Research Computing (CIARC.mines.edu)

Rscript – 3 nodes

Research Computing (rc.mines.edu)

XDMoD lab of your GROMACS Jobs (day after completion)

What was the most efficient? What was the fastest? September 5, 2024

GROMACS Benchmarking

Where is the processing bottle neck?

Cyber-Infrastructure and Advanced Research Computing (CIARC.mines.edu)

The Cost of HPC

All the simulations that you need to get done October 12, 2023

Equation for HPC Project Cost

Cyber-Infrastructure and Advanced Research Computing (CIARC.mines.edu)

GROMACS Benchmarking

GROMACS Benchmarking

٠

•

What is the simulation metric we need to optimize?

GROMACS Estimate Example

GROMACS Estimate Example

GROMACS Estimate Example

Life of a HPC Project (1-researcher)

Gromacs

- Learning
 - 6-9 months
 - Big and small models
 - No optimization
 - Cost \$1000s/m
- Production
 - 12-18 months
 - Right sized models
 - Optimized
 - Cost \$1000s/m
- Post-processing (papers, etc.)
 - 6 months
 - Rebuild models
 - No optimization
 - Cost \$1000s/m

\$25-40k

Fluent

- Learning
 - 12 months
 - Big models
 - Cost \$1000s/m
- Production
 - 12 months
 - 1-2 models
 - Optimized
 - Cost \$1000s/m

- Post-processing (paper, etc)
 - 6 months
 - Rebuild models
 - Cost \$1000s/m
- Mesh independence
 - 3 months
 - 4-8 Really big models
 - Cost \$1000s/m

\$70k

Research Computing (rc.mines.edu)

HPC Resources available from many sources

Can you get free HPC jobs? September 5, 2024

HPC Systems Options for Researchers

• FREE

- ACCESS (access-ci.org)
- RMACC (<u>Colorado.edu/rc/articles/rmaccsummit</u>)
- PAID
 - Mines HPC: Wendian (rc.mines.edu)
 - Cloud: AWS

Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS)

- NSF funded Supercomputer hosted around the country
 - Georgia Tech, Indiana, Johns Hopkings, Open Science Grid, Pittsburgh, Purdue, San Diego, Texas A&M, etc.
- System connection available through Allocations Process (allocations.access-ci.org)

- Authentication through CILOGIN

CREATE ACCOUNT

SELECT

OPPORTUNITY

1	 Ì

REQUEST ALLOCATION

RECEIVE CREDITS

EXCHANGE CREDITS

Create an account through provided <u>CILOGIN.ORG</u>

ACCESS Allocation Options

Allocation Type	Credit Threshold	
Explore ACCESS	400,000	
Discover ACCESS	1,500,000	
Accelerate ACCESS	3,000,000	
Maximize ACCESS	Not awarded in credits	

- Exchange for resource-specific allocations
 - Often unit is 1-to-1 for CPU/hours
 - Higher exchange ratio for GPU/hours and newer systems
 - All rates are set by institution providers

Exchange Calculator

 Examples: Johns Hopkins (GPU cluster) 1000:19, Johns Hopkins (CPU cluster) 1000:1000 Purdue (CPU) 1000:833, TACC (Knights Landing Phi nodes) 1000:56

ACCESS Support and Training

- All Provided by the MATCH Research Support team
- Create a Ticket
- Documentation
 - User guides, resource provides information, Support Knowledge Base
- Community Slack Channel
- Computational Science and Support Network (CSSN) Travel Grants and Rewards

MATCHPlus for 3-6 month projects

MATCHPremier for 12-18 month projects

