
Intro to MPI using Python: A (Semi)-Deep
Dive into mpi4py

November 21, 2024

Presented by:

Nicholas A. Danes, PhD

Computational Scientist

Research Computing Group, IT

Summary of Tuesday’s Workshop

• Amdahl’s Law (Strong Scaling)
• When the problem size is fixed, the serial fraction of a parallel code can

degrade parallel speedup

• Gustafson’s Law (Weak Scaling)
• The problem size scales linearly with the number of compute resources

• MPI is a C/C++/Fortran bindings library used for parallel
communication between processors, compute nodes, and/or
accelerators (e.g. GPUs)
• MPI is also available through Python (mpi4py)

• Overview of MPI concepts
• Lab covering mpi4py environment setup and running over first

codes without using MPI communication (embarrassingly parallel)

mpi4py: Pickled Objects vs NumPy Arrays

• When using MPI with C/C++ and Fortran, you need to use a buffer to send and
receive messages
• Common buffer types: integers, floating point, strings, etc.

• With mpi4py, you have two main options:
• Numpy arrays (more akin to the common buffer types in C/C++)

• Common data types: DOUBLE, INT, COMPLEX, FLOAT, CHAR

• “Pickled” object

• In Python, any object can be “pickled” into byte stream that can be used with
MPI communication functions
• There is a performance cost for using pickled objects, but can be convenient to rapidly

prototype

• Nomenclature differences
• Pickled MPI functions are lower cased, e.g. comm.send
• NumPy MPI functions are Upper cased, e.g. comm.Send

mpi4py: Initializing the MPI environment
• Unlike C/C++ and Fortran MPI, mpi4py initializes automatically when you import

mpi4py:

import mpi4py

Similarly, MPI Finalize is also called internally when the Python code exits!

For convenience, usually one uses the following syntax

from mpi4py import MPI

• Define variables for

• Communicator (typically MPI_COMM_WORLD)

comm = MPI.COMM_WORLD

• Rank (commonly using variable name rank)
rank = comm. rank

• Size (commonly using variable name size)
size = comm.size

Point to Point Communication

• Most MPI communication use some form of send and receive communication calls.

• They are blocking calls, which means every receive call from a rank needs a send call
from that rank

• Tags are used to differentiate multiple send/receive calls between ranks

• Pickled object:

comm.send(data, dest=DEST_RANK, tag=TAG_NUMBER)

receiver = comm.recv(source=SOURCE_RANK, tag=TAG_NUMBER)

• NumPy Array:

comm.Send([data, MPI.DATATYPE], dest=DEST_RANK, tag=TAG_NUMBER)

receiver = comm.Recv([data, MPI.INT] , source=SOURCE_RANK,

tag=TAG_NUMBER)

Lab Problem #1: Basic Parallel Matrix-
Vector Multiplication

• Consider an 𝑚 𝑥 𝑛 matrix 𝐴 being multiplied by a 𝑛 𝑥 1 vector 𝒃:

• If we have 𝑝 processors, how do we split the work up?

𝐴𝒃 =

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

𝑏1

⋮
𝑏𝑛

Lab Problem #1: Basic Parallel Matrix-
Vector Multiplication

• We know each row of 𝐴 does a dot product with 𝒃, so each of
these dot products can be computed independently.

• Instead using matrix multiplication on the entire matrix 𝐴 with
𝒃, we can just do dot products by splitting up the work into
submatrices on each processor.

𝑎𝑖1 ⋯ 𝑎𝑖𝑛

𝑏1

⋮
𝑏𝑛

= 𝑎𝑖1𝑏1+ 𝑎𝑖2𝑏2+… +𝑎𝑖𝑛𝑏1, 𝑖 = 1,2,3 … 𝑚

Lab #1: Matrix-Vector Multiplication &
Parallel Performance Lab using Strong Scaling

• Explore the mat_vec code and try to understand how the send/receive
calls are operating and how the data parallelism is setup.

• Run the code for 1,2,4,8,16,32,64,128 slurm tasks
• Use the post-process.inpy jupyter notebook to analyze the results
• (If time permits) Additional Exercise: Do a weak scaling analysis!

• Fix 𝑛, 𝑚 to a size for when 𝑝 = 1(make this smaller than the weak
scaling problem, I’d say 𝑚 = 𝑛 = 100)

• When 𝑝 = 2, double the size of n and m.. (𝑚 = 𝑛 = 200)
• When 𝑝 = 4, double the size of n and m… (𝑚 = 𝑛 = 400)
• Try this until it doesn’t scale anymore!

Collective Communication: Broadcast

• If you want one rank to send the same data to each other
rank simultaneously, use the broadcast function.

• Pickled Object

 data = comm.bcast(data, root=sending_rank)

• NumPy Array

 comm.Bcast(data, root=sending_rank)

Collective Communication: Scatter

• If you want one rank to send different data to each other rank
simultaneously, use the scatter function.

• Pickled Object

 data = comm.scatter(data, root=sending_rank)

• NumPy Array

 comm.Scatter(send_buffer, receive_buffer,
root=0)

Collective Communication: Gather

• If you want one rank to receive data from all other ranks
simultaneously, use the gather function.

• Pickled Object

 data = comm.gather(data, root=receiving_rank)

• NumPy Array

 comm.Gather(send_buffer, receiving_buffer,
root=receiving_rank)

Collective Communication: Reduce

• MPI provides a reduce collective communication for common data processing
functions:

• Pickled

 final_data = comm.reduce(data, op=MPI.OPERATION,
root=receiving_rank)

• Numpy Arrays

 comm.Reduce(send_buffer, [data, MPI.DATATYPE],
op=MPI.OPERATION, root=receiving_rank)

MPI.OPERATION common options:
• Add – MPI.SUM
• Max – MPI.MAX
• Min – MPI.Min

Advanced Collective Communication

• Gatherv – Like gather, but allows for variable buffer sizes that
the receiving rank obtains

• scatterv – Like scatter, but allows for variable buffer sizes with
irregular sizes

• allgather – A combination of gather and broadcast

• All-to-All – A combination of scatter and gather

• All-to-allv – A combination of scatter and gather

• These are highly advanced and will not be covered in this
workshop.

Mpi4py: Other Features

• Nonblocking communication
• isend, irecv

• Barrier
• MPI.Barrier can block communication until all ranks reach the barrier

• Parallel I/O (MPI-IO)

• One-sided communication

• Wrapping with compiled languages
• SWIG (C++)

• F2py (Fortran)

Using mpi4py with other libraries

• F2py – Fortran Wrapper

• Cython – Write python-style code that is converted into C and
used as python module

• SWIG – C++ Bindings Wrapper

• PETsc4py – A full linear algebra library that can be used with
mpi4py

Final Takeaways
• MPI is the library standard for providing parallel communication between nodes and other

compute devices

• Mpi4py provides a way to learn MPI using Python, decreasing time to development for testing

• For best performance, always test your serial case
• In this workshop, we did not always make the serial case as fast as possible in our examples
• Using C/C++ (Cython, SWIG) and Fortran (F2py) wrappers are ways to use Python as your “glue” code with MPI,

while doing compute-intensive tasks in lower-level languages

• There are more than one ways to implement a problem using MPI
• When in doubt, use send/receive so you can track what messages are being passed

• Gather/scatter can be a replacement if you understand how you want your data to move around

• MPI.Reduce can make simplifying a set of data across multiple ranks quick
• MPI.Broadcast lets you send data to all ranks quickly

• Always test your performance!
• Strong and Weak scaling are both tools you can use

• If you know your problem size is fixed, use strong scaling by increasing processors and evaluating run time until
efficiency/speed-up trade offs are no longer tolerable

• If you need to scale your problem to the processor count, use weak scaling to do your analysis.

Need Help?

• RC provides consultations on parallel computing
• We won’t write your code for you, but we can help you on the right path

• Strong/Weak scaling analysis guidance

• MPI is our preferred library for setting up parallel codes, but we are open to
other libraries, including (but not limited to):
• CUDA

• Dask

• Torch.distributed

• OpenMP

• Get in touch with us here:
https://outlook.office365.com/owa/calendar/CIARCTeamServices@mi
nes0.onmicrosoft.com/bookings/

https://outlook.office365.com/owa/calendar/CIARCTeamServices@mines0.onmicrosoft.com/bookings/
https://outlook.office365.com/owa/calendar/CIARCTeamServices@mines0.onmicrosoft.com/bookings/

Lab #2
Exercise: Modify Matrix-Vector Multiplication to use
gatherv instead of send/receive!

Exit Survey – Please fill out!

• Survey Link: https://forms.office.com/r/JWAfVphbJ3

https://forms.office.com/r/JWAfVphbJ3

	Slide 1: Intro to MPI using Python: A (Semi)-Deep Dive into mpi4py
	Slide 2: Summary of Tuesday’s Workshop
	Slide 3: mpi4py: Pickled Objects vs NumPy Arrays
	Slide 4: mpi4py: Initializing the MPI environment
	Slide 5: Point to Point Communication
	Slide 6: Lab Problem #1: Basic Parallel Matrix-Vector Multiplication
	Slide 7: Lab Problem #1: Basic Parallel Matrix-Vector Multiplication
	Slide 8: Lab #1: Matrix-Vector Multiplication & Parallel Performance Lab using Strong Scaling
	Slide 9: Collective Communication: Broadcast
	Slide 10: Collective Communication: Scatter
	Slide 11: Collective Communication: Gather
	Slide 12: Collective Communication: Reduce
	Slide 13: Advanced Collective Communication
	Slide 14: Mpi4py: Other Features
	Slide 15: Using mpi4py with other libraries
	Slide 16: Final Takeaways
	Slide 17: Need Help?
	Slide 18: Lab #2 Exercise: Modify Matrix-Vector Multiplication to use gatherv instead of send/receive!
	Slide 19: Exit Survey – Please fill out!

